ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model/voiceassistant/generate.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

147 lines
6.9 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
import numpy as np
import inquirer
# For Windows users, please remove `import sounddevice`
import sounddevice
from ipex_llm.transformers import AutoModelForCausalLM
from ipex_llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import LlamaTokenizer
from transformers import WhisperProcessor
from transformers import TextStreamer
from colorama import Fore
import speech_recognition as sr
from datasets import load_dataset
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--whisper-repo-id-or-model-path', type=str, default="openai/whisper-small",
help='The huggingface repo id for the Whisper (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
# Select device
mics = sr.Microphone.list_microphone_names()
mics.insert(0, "Default")
questions = [
inquirer.List('device_name',
message="Which microphone do you choose?",
choices=mics)
]
answers = inquirer.prompt(questions)
device_name = answers['device_name']
idx = mics.index(device_name)
device_index = None if idx == 0 else idx - 1
print(f"The device name {device_name} is selected.")
whisper_model_path = args.whisper_repo_id_or_model_path
llama_model_path = args.llama2_repo_id_or_model_path
dataset_path = "hf-internal-testing/librispeech_asr_dummy"
# Load dummy dataset and read audio files
ds = load_dataset(dataset_path, "clean", split="validation")
print("Converting and loading models...")
processor = WhisperProcessor.from_pretrained(whisper_model_path)
# generate token ids
whisper = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False, use_cache=True)
whisper.config.forced_decoder_ids = None
whisper = whisper.to('xpu')
# When running Llama models on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False, use_cache=True)
llama_model = llama_model.to('xpu')
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
r = sr.Recognizer()
with torch.inference_mode():
# warm up
sample = ds[2]["audio"]
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
input_features = input_features.contiguous().to('xpu')
torch.xpu.synchronize()
predicted_ids = whisper.generate(input_features)
torch.xpu.synchronize()
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
output_str = output_str[0]
input_ids = tokenizer.encode(output_str, return_tensors="pt").to('xpu')
output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
torch.xpu.synchronize()
with sr.Microphone(device_index=device_index, sample_rate=16000) as source:
print("Calibrating...")
r.adjust_for_ambient_noise(source, duration=5)
while 1:
print(Fore.YELLOW + "Listening now..." + Fore.RESET)
try:
audio = r.listen(source, timeout=5, phrase_time_limit=30)
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
print("Recognizing...")
input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
input_features = input_features.contiguous().to('xpu')
except Exception as e:
unrecognized_speech_text = (
f"Sorry, I didn't catch that. Exception was: \n {e}"
)
print(unrecognized_speech_text)
predicted_ids = whisper.generate(input_features)
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
output_str = output_str[0]
print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
_ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)