152 lines
		
	
	
		
			No EOL
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			No EOL
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
# Copyright 2016 The BigDL Authors.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
#
 | 
						||
 | 
						||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
						||
# physically located elsewhere.
 | 
						||
# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
						||
# only search the first bigdl package and end up finding only one sub-package.
 | 
						||
 | 
						||
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
 | 
						||
 | 
						||
 | 
						||
from langchain import LLMChain, PromptTemplate
 | 
						||
from ipex_llm.langchain.llms import TransformersLLM
 | 
						||
from langchain.memory import ConversationBufferWindowMemory
 | 
						||
from ipex_llm.transformers import AutoModelForSpeechSeq2Seq
 | 
						||
from transformers import WhisperProcessor
 | 
						||
import speech_recognition as sr
 | 
						||
import numpy as np
 | 
						||
import pyttsx3
 | 
						||
import argparse
 | 
						||
import time
 | 
						||
 | 
						||
english_template = """
 | 
						||
{history}
 | 
						||
Q: {human_input}
 | 
						||
A:"""
 | 
						||
 | 
						||
chinese_template = """{history}\n\n问:{human_input}\n\n答:"""
 | 
						||
 | 
						||
 | 
						||
template_dict = {
 | 
						||
    "english": english_template,
 | 
						||
    "chinese": chinese_template
 | 
						||
}
 | 
						||
 | 
						||
llm_load_methods = (
 | 
						||
    TransformersLLM.from_model_id,
 | 
						||
    TransformersLLM.from_model_id_low_bit,
 | 
						||
)
 | 
						||
 | 
						||
def prepare_chain(args):
 | 
						||
 | 
						||
    llm_model_path = args.llm_model_path
 | 
						||
 | 
						||
    # Use a easy prompt could bring good-enough result
 | 
						||
    # For Chinese Prompt
 | 
						||
    # template = """{history}\n\n问:{human_input}\n\n答:"""
 | 
						||
    template = template_dict[args.language]
 | 
						||
    prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
 | 
						||
 | 
						||
    method_index = 1 if args.directly else 0
 | 
						||
    llm = llm_load_methods[method_index](
 | 
						||
            model_id=llm_model_path,
 | 
						||
            model_kwargs={"temperature": 0,
 | 
						||
                          "trust_remote_code": True},
 | 
						||
    )
 | 
						||
 | 
						||
    # Following code are complete the same as the use-case
 | 
						||
    voiceassitant_chain = LLMChain(
 | 
						||
        llm=llm,
 | 
						||
        prompt=prompt,
 | 
						||
        verbose=True,
 | 
						||
        llm_kwargs={"max_new_tokens":args.max_new_tokens},
 | 
						||
        memory=ConversationBufferWindowMemory(k=2),
 | 
						||
    )
 | 
						||
 | 
						||
    recog_model_path = args.recog_model_path
 | 
						||
    processor = WhisperProcessor.from_pretrained(recog_model_path)
 | 
						||
    recogn_model = AutoModelForSpeechSeq2Seq.from_pretrained(recog_model_path, load_in_4bit=True)
 | 
						||
    recogn_model.config.forced_decoder_ids = None
 | 
						||
    forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task="transcribe")
 | 
						||
 | 
						||
    return voiceassitant_chain, processor, recogn_model, forced_decoder_ids
 | 
						||
 | 
						||
 | 
						||
def listen(chain):
 | 
						||
 | 
						||
    voiceassitant_chain, processor, recogn_model, forced_decoder_ids = chain
 | 
						||
 | 
						||
    # engine = pyttsx3.init()
 | 
						||
    r = sr.Recognizer()
 | 
						||
    with sr.Microphone(device_index=1, sample_rate=16000) as source:
 | 
						||
        print("Calibrating...")
 | 
						||
        r.adjust_for_ambient_noise(source, duration=5)
 | 
						||
        # optional parameters to adjust microphone sensitivity
 | 
						||
        # r.energy_threshold = 200
 | 
						||
        # r.pause_threshold=0.5
 | 
						||
 | 
						||
        print("Okay, go!")
 | 
						||
        while 1:
 | 
						||
            text = ""
 | 
						||
            print("listening now...")
 | 
						||
            try:
 | 
						||
                audio = r.listen(source, timeout=5, phrase_time_limit=30)
 | 
						||
                # refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
 | 
						||
                frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
 | 
						||
                print("Recognizing...")
 | 
						||
                st = time.time()
 | 
						||
                input_features = processor(frame_data,
 | 
						||
                                           sampling_rate=audio.sample_rate,
 | 
						||
                                           return_tensors="pt").input_features
 | 
						||
                predicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
 | 
						||
                text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
 | 
						||
                time_0 = time.time() - st
 | 
						||
 | 
						||
            except Exception as e:
 | 
						||
                unrecognized_speech_text = (
 | 
						||
                    f"Sorry, I didn't catch that. Exception was: \n {e}"
 | 
						||
                )
 | 
						||
                text = unrecognized_speech_text
 | 
						||
            st = time.time()
 | 
						||
            response_text = voiceassitant_chain.predict(human_input=text,
 | 
						||
                                                        stop="\n\n")
 | 
						||
            print(response_text)
 | 
						||
            print(f"Recognized in {time_0}s, Predicted in {time.time() - st}s")
 | 
						||
            # engine.say(response_text)
 | 
						||
            # engine.runAndWait()
 | 
						||
 | 
						||
 | 
						||
def main(args):
 | 
						||
    chain = prepare_chain(args)
 | 
						||
    listen(chain)
 | 
						||
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    parser = argparse.ArgumentParser(description='BigDL-LLM Transformer Int4 Langchain Voice Assistant Example')
 | 
						||
    parser.add_argument('-r', '--recog-model-path', type=str, required=True,
 | 
						||
                        help="the path to the huggingface speech recognition model")
 | 
						||
    parser.add_argument('-m','--llm-model-path', type=str, required=True,
 | 
						||
                        help='the path to the huggingface llm model')
 | 
						||
    parser.add_argument('-x','--max-new-tokens', type=int, default=32,
 | 
						||
                        help='the max new tokens of model tokens input')
 | 
						||
    parser.add_argument('-l', '--language', type=str, default="english",
 | 
						||
                        help='the language to be transcribed')
 | 
						||
    parser.add_argument('-d', '--directly', action='store_true',
 | 
						||
                        help='whether to load low bit model directly')
 | 
						||
    args = parser.parse_args()
 | 
						||
 | 
						||
    main(args) |