96 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
						|
# physically located elsewhere.
 | 
						|
# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
						|
# only search the first bigdl package and end up finding only one sub-package.
 | 
						|
 | 
						|
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
 | 
						|
 | 
						|
import argparse
 | 
						|
 | 
						|
from langchain.vectorstores import Chroma
 | 
						|
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
 | 
						|
                                                     QA_PROMPT)
 | 
						|
from langchain.text_splitter import CharacterTextSplitter
 | 
						|
from langchain.chains.question_answering import load_qa_chain
 | 
						|
from langchain.callbacks.manager import CallbackManager
 | 
						|
 | 
						|
from ipex_llm.langchain.llms import TransformersLLM
 | 
						|
from ipex_llm.langchain.embeddings import TransformersEmbeddings
 | 
						|
 | 
						|
text_doc = '''
 | 
						|
BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
 | 
						|
LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
 | 
						|
Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
 | 
						|
Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
 | 
						|
DLlib: “Equivalent of Spark MLlib” for Deep Learning
 | 
						|
Chronos: Scalable Time Series Analysis using AutoML
 | 
						|
Friesian: End-to-End Recommendation Systems
 | 
						|
PPML: Secure Big Data and AI (with SGX Hardware Security)
 | 
						|
'''
 | 
						|
 | 
						|
def main(args):
 | 
						|
 | 
						|
    input_path = args.input_path 
 | 
						|
    model_path = args.model_path
 | 
						|
    query = args.question
 | 
						|
 | 
						|
    # split texts of input doc
 | 
						|
    if input_path is None:
 | 
						|
        input_doc = text_doc
 | 
						|
    else:
 | 
						|
        with open(input_path) as f:
 | 
						|
            input_doc = f.read()
 | 
						|
            
 | 
						|
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
 | 
						|
    texts = text_splitter.split_text(input_doc)
 | 
						|
 | 
						|
    # create embeddings and store into vectordb
 | 
						|
    embeddings = TransformersEmbeddings.from_model_id(
 | 
						|
        model_id=model_path, 
 | 
						|
        model_kwargs={"trust_remote_code": True}
 | 
						|
        )
 | 
						|
    docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
 | 
						|
 | 
						|
    #get relavant texts
 | 
						|
    docs = docsearch.get_relevant_documents(query)
 | 
						|
 | 
						|
    bigdl_llm = TransformersLLM.from_model_id(
 | 
						|
        model_id=model_path,
 | 
						|
        model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
 | 
						|
    )
 | 
						|
 | 
						|
    doc_chain = load_qa_chain(
 | 
						|
        bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
 | 
						|
    )
 | 
						|
 | 
						|
    output = doc_chain.run(input_documents=docs, question=query)
 | 
						|
    print(output)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example')
 | 
						|
    parser.add_argument('-m','--model-path', type=str, required=True,
 | 
						|
                        help='the path to transformers model')
 | 
						|
    parser.add_argument('-i', '--input-path', type=str,
 | 
						|
                        help='the path to the input doc.')
 | 
						|
    parser.add_argument('-q', '--question', type=str, default='What is BigDL?',
 | 
						|
                        help='qustion you want to ask.')
 | 
						|
    args = parser.parse_args()
 | 
						|
    
 | 
						|
    main(args)
 |