127 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer, TextStreamer
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
						|
               system_prompt: str) -> str:
 | 
						|
    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
						|
    # The first user input is _not_ stripped
 | 
						|
    do_strip = False
 | 
						|
    for user_input, response in chat_history:
 | 
						|
        user_input = user_input.strip() if do_strip else user_input
 | 
						|
        do_strip = True
 | 
						|
        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
						|
    message = message.strip() if do_strip else message
 | 
						|
    texts.append(f'{message} [/INST]')
 | 
						|
    return ''.join(texts)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Predict Tokens using `generate()` API for npu model"
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--repo-id-or-model-path",
 | 
						|
        type=str,
 | 
						|
        default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
        help="The huggingface repo id for the Llama2 model to be downloaded"
 | 
						|
        ", or the path to the huggingface checkpoint folder",
 | 
						|
    )
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
						|
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
						|
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
						|
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
						|
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
						|
    parser.add_argument("--save-directory", type=str,
 | 
						|
        required=True,
 | 
						|
        help="The path of folder to save converted model, "
 | 
						|
             "If path not exists, lowbit model will be saved there. "
 | 
						|
             "Else, lowbit model will be loaded.",
 | 
						|
    )
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    if not os.path.exists(args.save_directory):
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                     optimize_model=True,
 | 
						|
                                                     pipeline=True,
 | 
						|
                                                     max_context_len=args.max_context_len,
 | 
						|
                                                     max_prompt_len=args.max_prompt_len,
 | 
						|
                                                     quantization_group_size=args.quantization_group_size,
 | 
						|
                                                     torch_dtype=torch.float16,
 | 
						|
                                                     attn_implementation="eager",
 | 
						|
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
						|
                                                     save_directory=args.save_directory)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        tokenizer.save_pretrained(args.save_directory)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(
 | 
						|
            args.save_directory,
 | 
						|
            attn_implementation="eager",
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            max_context_len=args.max_context_len,
 | 
						|
            max_prompt_len=args.max_prompt_len,
 | 
						|
            pipeline=True,
 | 
						|
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
						|
        )
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
						|
 | 
						|
 | 
						|
    if args.disable_streaming:
 | 
						|
        streamer = None
 | 
						|
    else:
 | 
						|
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
						|
 | 
						|
    DEFAULT_SYSTEM_PROMPT = """\
 | 
						|
    """
 | 
						|
 | 
						|
    print("-" * 80)
 | 
						|
    print("done")
 | 
						|
    with torch.inference_mode():
 | 
						|
        print("finish to load")
 | 
						|
        for i in range(3):
 | 
						|
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
						|
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
            print("-" * 20, "Input", "-" * 20)
 | 
						|
            print("input length:", len(_input_ids[0]))
 | 
						|
            print(prompt)
 | 
						|
            print("-" * 20, "Output", "-" * 20)
 | 
						|
            st = time.time()
 | 
						|
            output = model.generate(
 | 
						|
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
						|
            )
 | 
						|
            end = time.time()
 | 
						|
            if args.disable_streaming:
 | 
						|
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
                print(output_str)
 | 
						|
            print(f"Inference time: {end-st} s")
 | 
						|
 | 
						|
    print("-" * 80)
 | 
						|
    print("done")
 | 
						|
    print("success shut down")
 |