* add ppl benchmark * add license * add readme * add dataset argument * add dataset usage * fixed low bit args * correct result * fix terminal display * fix ppl update * enable fp16 fp32 bf16 * format the desc * fix model_kwargs * add more readme  | 
			||
|---|---|---|
| .. | ||
| ppl.py | ||
| README.md | ||
| run.py | ||
Perplexity
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from transformers/perplexity and llm_perplexity.py
HOW TO RUN
python run.py --model_path <path/to/model> --low_bit sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --dataset path=<dataset_path>,name=<dataset_name>
A more specific example to run perplexity on Llama2-7B and wikitext:
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --low_bit float16 sym_int4 --device xpu --dataset path=wikitext,name=wikitext-2-raw-v1