116 lines
No EOL
4.4 KiB
Python
116 lines
No EOL
4.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import argparse
|
|
import sys
|
|
|
|
# todo: support more model class
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
from transformers import TextIteratorStreamer
|
|
from transformers.tools.agents import StopSequenceCriteria
|
|
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
|
|
|
from colorama import Fore
|
|
|
|
from bigdl.llm import optimize_model
|
|
|
|
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
|
|
The assistant gives helpful, detailed, and polite answers to the human's questions."
|
|
HUMAN_ID = "<human>"
|
|
BOT_ID = "<bot>"
|
|
|
|
# chat_history formated in [(iput_str, output_str)]
|
|
def format_prompt(input_str,
|
|
chat_history):
|
|
prompt = [f"{SYSTEM_PROMPT}\n"]
|
|
for history_input_str, history_output_str in chat_history:
|
|
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
|
|
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
|
|
|
|
return "".join(prompt)
|
|
|
|
def stream_chat(model,
|
|
tokenizer,
|
|
stopping_criteria,
|
|
input_str,
|
|
chat_history):
|
|
prompt = format_prompt(input_str, chat_history)
|
|
# print(prompt)
|
|
input_ids = tokenizer([prompt], return_tensors="pt")
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512, stopping_criteria=stopping_criteria)
|
|
|
|
from threading import Thread
|
|
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
thread.start()
|
|
|
|
output_str = []
|
|
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
|
|
for partial_output_str in streamer:
|
|
output_str.append(partial_output_str)
|
|
# remove the last HUMAN_ID if exists
|
|
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
|
|
|
|
chat_history.append((input_str, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
|
|
|
|
def auto_select_model(model_name):
|
|
try:
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
except:
|
|
model = AutoModel.from_pretrained(model_path,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
except:
|
|
print("Sorry, the model you entered is not supported in installer.")
|
|
sys.exit()
|
|
|
|
return model
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model-path", type=str, help="path to an llm")
|
|
args = parser.parse_args()
|
|
|
|
model_path = args.model_path
|
|
|
|
model = auto_select_model(model_path)
|
|
model = optimize_model(model)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
|
|
|
|
chat_history = []
|
|
|
|
while True:
|
|
with torch.inference_mode():
|
|
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
|
|
if user_input == "stop": # let's stop the conversation when user input "stop"
|
|
break
|
|
stream_chat(model=model,
|
|
tokenizer=tokenizer,
|
|
stopping_criteria=stopping_criteria,
|
|
input_str=user_input,
|
|
chat_history=chat_history) |