* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			319 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			319 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# This file is copied from
 | 
						|
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
 | 
						|
#
 | 
						|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
 | 
						|
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
# http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from ipex_llm import llm_patch
 | 
						|
llm_patch(train=True)
 | 
						|
 | 
						|
# The following is the original LLM finetuning code using PEFT (without BigDL-LLM)
 | 
						|
import os
 | 
						|
import sys
 | 
						|
from typing import List
 | 
						|
 | 
						|
import fire
 | 
						|
import torch
 | 
						|
import transformers
 | 
						|
from datasets import load_dataset
 | 
						|
 | 
						|
"""
 | 
						|
Unused imports:
 | 
						|
import torch.nn as nn
 | 
						|
import bitsandbytes as bnb
 | 
						|
"""
 | 
						|
 | 
						|
from peft import (
 | 
						|
    LoraConfig,
 | 
						|
    get_peft_model,
 | 
						|
    get_peft_model_state_dict,
 | 
						|
    prepare_model_for_int8_training,
 | 
						|
    set_peft_model_state_dict,
 | 
						|
)
 | 
						|
from transformers import LlamaForCausalLM, LlamaTokenizer
 | 
						|
 | 
						|
from utils.prompter import Prompter
 | 
						|
 | 
						|
 | 
						|
def train(
 | 
						|
    # model/data params
 | 
						|
    base_model: str = "",  # the only required argument
 | 
						|
    data_path: str = "yahma/alpaca-cleaned",
 | 
						|
    output_dir: str = "./lora-alpaca",
 | 
						|
    # training hyperparams
 | 
						|
    batch_size: int = 128,
 | 
						|
    micro_batch_size: int = 4,
 | 
						|
    num_epochs: int = 3,
 | 
						|
    learning_rate: float = 3e-4,
 | 
						|
    cutoff_len: int = 256,
 | 
						|
    val_set_size: int = 2000,
 | 
						|
    # lora hyperparams
 | 
						|
    lora_r: int = 8,
 | 
						|
    lora_alpha: int = 16,
 | 
						|
    lora_dropout: float = 0.05,
 | 
						|
    lora_target_modules: List[str] = [
 | 
						|
        "q_proj",
 | 
						|
        "v_proj",
 | 
						|
    ],
 | 
						|
    # llm hyperparams
 | 
						|
    train_on_inputs: bool = True,  # if False, masks out inputs in loss
 | 
						|
    add_eos_token: bool = False,
 | 
						|
    group_by_length: bool = False,  # faster, but produces an odd training loss curve
 | 
						|
    # wandb params
 | 
						|
    wandb_project: str = "",
 | 
						|
    wandb_run_name: str = "",
 | 
						|
    wandb_watch: str = "",  # options: false | gradients | all
 | 
						|
    wandb_log_model: str = "",  # options: false | true
 | 
						|
    resume_from_checkpoint: str = None,  # either training checkpoint or final adapter
 | 
						|
    prompt_template_name: str = "alpaca",  # The prompt template to use, will default to alpaca.
 | 
						|
):
 | 
						|
    if int(os.environ.get("LOCAL_RANK", 0)) == 0:
 | 
						|
        print(
 | 
						|
            f"Training Alpaca-LoRA model with params:\n"
 | 
						|
            f"base_model: {base_model}\n"
 | 
						|
            f"data_path: {data_path}\n"
 | 
						|
            f"output_dir: {output_dir}\n"
 | 
						|
            f"batch_size: {batch_size}\n"
 | 
						|
            f"micro_batch_size: {micro_batch_size}\n"
 | 
						|
            f"num_epochs: {num_epochs}\n"
 | 
						|
            f"learning_rate: {learning_rate}\n"
 | 
						|
            f"cutoff_len: {cutoff_len}\n"
 | 
						|
            f"val_set_size: {val_set_size}\n"
 | 
						|
            f"lora_r: {lora_r}\n"
 | 
						|
            f"lora_alpha: {lora_alpha}\n"
 | 
						|
            f"lora_dropout: {lora_dropout}\n"
 | 
						|
            f"lora_target_modules: {lora_target_modules}\n"
 | 
						|
            f"train_on_inputs: {train_on_inputs}\n"
 | 
						|
            f"add_eos_token: {add_eos_token}\n"
 | 
						|
            f"group_by_length: {group_by_length}\n"
 | 
						|
            f"wandb_project: {wandb_project}\n"
 | 
						|
            f"wandb_run_name: {wandb_run_name}\n"
 | 
						|
            f"wandb_watch: {wandb_watch}\n"
 | 
						|
            f"wandb_log_model: {wandb_log_model}\n"
 | 
						|
            f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
 | 
						|
            f"prompt template: {prompt_template_name}\n"
 | 
						|
        )
 | 
						|
    assert (
 | 
						|
        base_model
 | 
						|
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
 | 
						|
    gradient_accumulation_steps = batch_size // micro_batch_size
 | 
						|
 | 
						|
    prompter = Prompter(prompt_template_name)
 | 
						|
 | 
						|
    device_map = "auto"
 | 
						|
    world_size = int(os.environ.get("WORLD_SIZE", 1))
 | 
						|
    ddp = world_size != 1
 | 
						|
    if ddp:
 | 
						|
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
 | 
						|
        gradient_accumulation_steps = gradient_accumulation_steps // world_size
 | 
						|
 | 
						|
    # Check if parameter passed or if set within environ
 | 
						|
    use_wandb = len(wandb_project) > 0 or (
 | 
						|
        "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
 | 
						|
    )
 | 
						|
    # Only overwrite environ if wandb param passed
 | 
						|
    if len(wandb_project) > 0:
 | 
						|
        os.environ["WANDB_PROJECT"] = wandb_project
 | 
						|
    if len(wandb_watch) > 0:
 | 
						|
        os.environ["WANDB_WATCH"] = wandb_watch
 | 
						|
    if len(wandb_log_model) > 0:
 | 
						|
        os.environ["WANDB_LOG_MODEL"] = wandb_log_model
 | 
						|
 | 
						|
    model = LlamaForCausalLM.from_pretrained(
 | 
						|
        base_model,
 | 
						|
        load_in_8bit=True,
 | 
						|
        torch_dtype=torch.float16,
 | 
						|
        device_map=device_map,
 | 
						|
    )
 | 
						|
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(base_model)
 | 
						|
 | 
						|
    tokenizer.pad_token_id = (
 | 
						|
        0  # unk. we want this to be different from the eos token
 | 
						|
    )
 | 
						|
    tokenizer.padding_side = "left"  # Allow batched inference
 | 
						|
 | 
						|
    def tokenize(prompt, add_eos_token=True):
 | 
						|
        # there's probably a way to do this with the tokenizer settings
 | 
						|
        # but again, gotta move fast
 | 
						|
        result = tokenizer(
 | 
						|
            prompt,
 | 
						|
            truncation=True,
 | 
						|
            max_length=cutoff_len,
 | 
						|
            padding=False,
 | 
						|
            return_tensors=None,
 | 
						|
        )
 | 
						|
        if (
 | 
						|
            result["input_ids"][-1] != tokenizer.eos_token_id
 | 
						|
            and len(result["input_ids"]) < cutoff_len
 | 
						|
            and add_eos_token
 | 
						|
        ):
 | 
						|
            result["input_ids"].append(tokenizer.eos_token_id)
 | 
						|
            result["attention_mask"].append(1)
 | 
						|
 | 
						|
        result["labels"] = result["input_ids"].copy()
 | 
						|
 | 
						|
        return result
 | 
						|
 | 
						|
    def generate_and_tokenize_prompt(data_point):
 | 
						|
        full_prompt = prompter.generate_prompt(
 | 
						|
            data_point["instruction"],
 | 
						|
            data_point["input"],
 | 
						|
            data_point["output"],
 | 
						|
        )
 | 
						|
        tokenized_full_prompt = tokenize(full_prompt)
 | 
						|
        if not train_on_inputs:
 | 
						|
            user_prompt = prompter.generate_prompt(
 | 
						|
                data_point["instruction"], data_point["input"]
 | 
						|
            )
 | 
						|
            tokenized_user_prompt = tokenize(
 | 
						|
                user_prompt, add_eos_token=add_eos_token
 | 
						|
            )
 | 
						|
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
 | 
						|
 | 
						|
            if add_eos_token:
 | 
						|
                user_prompt_len -= 1
 | 
						|
 | 
						|
            tokenized_full_prompt["labels"] = [
 | 
						|
                -100
 | 
						|
            ] * user_prompt_len + tokenized_full_prompt["labels"][
 | 
						|
                user_prompt_len:
 | 
						|
            ]  # could be sped up, probably
 | 
						|
        return tokenized_full_prompt
 | 
						|
 | 
						|
    model = prepare_model_for_int8_training(model)
 | 
						|
 | 
						|
    config = LoraConfig(
 | 
						|
        r=lora_r,
 | 
						|
        lora_alpha=lora_alpha,
 | 
						|
        target_modules=lora_target_modules,
 | 
						|
        lora_dropout=lora_dropout,
 | 
						|
        bias="none",
 | 
						|
        task_type="CAUSAL_LM",
 | 
						|
    )
 | 
						|
    model = get_peft_model(model, config)
 | 
						|
 | 
						|
    if data_path.endswith(".json") or data_path.endswith(".jsonl"):
 | 
						|
        data = load_dataset("json", data_files=data_path)
 | 
						|
    else:
 | 
						|
        data = load_dataset(data_path)
 | 
						|
 | 
						|
    if resume_from_checkpoint:
 | 
						|
        # Check the available weights and load them
 | 
						|
        checkpoint_name = os.path.join(
 | 
						|
            resume_from_checkpoint, "pytorch_model.bin"
 | 
						|
        )  # Full checkpoint
 | 
						|
        if not os.path.exists(checkpoint_name):
 | 
						|
            checkpoint_name = os.path.join(
 | 
						|
                resume_from_checkpoint, "adapter_model.bin"
 | 
						|
            )  # only LoRA model - LoRA config above has to fit
 | 
						|
            resume_from_checkpoint = (
 | 
						|
                False  # So the trainer won't try loading its state
 | 
						|
            )
 | 
						|
        # The two files above have a different name depending on how they were saved, but are actually the same.
 | 
						|
        if os.path.exists(checkpoint_name):
 | 
						|
            print(f"Restarting from {checkpoint_name}")
 | 
						|
            adapters_weights = torch.load(checkpoint_name)
 | 
						|
            set_peft_model_state_dict(model, adapters_weights)
 | 
						|
        else:
 | 
						|
            print(f"Checkpoint {checkpoint_name} not found")
 | 
						|
 | 
						|
    model.print_trainable_parameters()  # Be more transparent about the % of trainable params.
 | 
						|
 | 
						|
    if val_set_size > 0:
 | 
						|
        train_val = data["train"].train_test_split(
 | 
						|
            test_size=val_set_size, shuffle=True, seed=42
 | 
						|
        )
 | 
						|
        train_data = (
 | 
						|
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
 | 
						|
        )
 | 
						|
        val_data = (
 | 
						|
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
 | 
						|
        val_data = None
 | 
						|
 | 
						|
    if not ddp and torch.cuda.device_count() > 1:
 | 
						|
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
 | 
						|
        model.is_parallelizable = True
 | 
						|
        model.model_parallel = True
 | 
						|
 | 
						|
    trainer = transformers.Trainer(
 | 
						|
        model=model,
 | 
						|
        train_dataset=train_data,
 | 
						|
        eval_dataset=val_data,
 | 
						|
        args=transformers.TrainingArguments(
 | 
						|
            per_device_train_batch_size=micro_batch_size,
 | 
						|
            gradient_accumulation_steps=gradient_accumulation_steps,
 | 
						|
            warmup_steps=100,
 | 
						|
            num_train_epochs=num_epochs,
 | 
						|
            learning_rate=learning_rate,
 | 
						|
            fp16=True,
 | 
						|
            logging_steps=10,
 | 
						|
            optim="adamw_torch",
 | 
						|
            evaluation_strategy="steps" if val_set_size > 0 else "no",
 | 
						|
            save_strategy="steps",
 | 
						|
            eval_steps=200 if val_set_size > 0 else None,
 | 
						|
            save_steps=200,
 | 
						|
            output_dir=output_dir,
 | 
						|
            save_total_limit=3,
 | 
						|
            load_best_model_at_end=True if val_set_size > 0 else False,
 | 
						|
            ddp_find_unused_parameters=False if ddp else None,
 | 
						|
            group_by_length=group_by_length,
 | 
						|
            report_to="wandb" if use_wandb else None,
 | 
						|
            run_name=wandb_run_name if use_wandb else None,
 | 
						|
        ),
 | 
						|
        data_collator=transformers.DataCollatorForSeq2Seq(
 | 
						|
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    model.config.use_cache = False
 | 
						|
 | 
						|
    old_state_dict = model.state_dict
 | 
						|
    model.state_dict = (
 | 
						|
        lambda self, *_, **__: get_peft_model_state_dict(
 | 
						|
            self, old_state_dict()
 | 
						|
        )
 | 
						|
    ).__get__(model, type(model))
 | 
						|
 | 
						|
    if torch.__version__ >= "2" and sys.platform != "win32":
 | 
						|
        model = torch.compile(model)
 | 
						|
 | 
						|
    trainer.train(resume_from_checkpoint=resume_from_checkpoint)
 | 
						|
 | 
						|
    model.save_pretrained(output_dir)
 | 
						|
 | 
						|
    print(
 | 
						|
        "\n If there's a warning about missing keys above, please disregard :)"
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    fire.Fire(train)
 |