ipex-llm/python/llm/test/benchmark/csv_to_html.py
Yuwen Hu 21de2613ce [LLM] Add model loading time record for all-in-one benchmark (#10201)
* Add model loading time record in csv for all-in-one benchmark

* Small fix

* Small fix to number after .
2024-02-22 13:57:18 +08:00

182 lines
8.1 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import pandas as pd
def highlight_vals(val, max=3.0, color1='red', color2='green'):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color2
elif val <= -max:
return 'background-color: %s' % color1
else:
return ''
def nonzero_min(lst):
non_zero_lst = [num for num in lst if num > 0.0]
return min(non_zero_lst) if non_zero_lst else None
def is_diffs_within_normal_range(diff1, diff2, threshold=5.0):
return not any(diff < (-threshold) for diff in diff1 + diff2 if isinstance(diff, float))
def add_to_dict(dict, key, value):
if key not in dict:
dict[key] = []
dict[key].append(value)
def best_in_dict(dict, key, value):
if key in dict:
best_value = nonzero_min(dict[key])
if best_value < value or value <= 0.0:
return best_value
return value
return value
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf_gpu/")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
highlight_threshold=args.threshold
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
diffs_within_normal_range = True
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last1=['']*len(latest_csv.index)
diff1=['']*len(latest_csv.index)
last2=['']*len(latest_csv.index)
diff2=['']*len(latest_csv.index)
best_last1=['']*len(latest_csv.index)
best_diff1=['']*len(latest_csv.index)
best_last2=['']*len(latest_csv.index)
best_diff2=['']*len(latest_csv.index)
latency_1st_token='1st token avg latency (ms)'
latency_2_avg='2+ avg latency (ms/token)'
csv_dict = {}
for csv_file in csv_files:
current_csv = pd.read_csv(csv_file, index_col=0)
for current_csv_ind,current_csv_row in current_csv.iterrows():
current_csv_model=current_csv_row['model'].strip()
current_csv_input_output_pairs=current_csv_row['input/output tokens'].strip()
current_csv_model_input_1st=current_csv_model+'-'+current_csv_input_output_pairs+'-'+'1st'
current_csv_model_input_2nd=current_csv_model+'-'+current_csv_input_output_pairs+'-'+'2nd'
add_to_dict(csv_dict, current_csv_model_input_1st, current_csv_row[latency_1st_token])
add_to_dict(csv_dict, current_csv_model_input_2nd, current_csv_row[latency_2_avg])
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
latest_csv_model=latest_csv_row['model'].strip()
latest_csv_input_output_pairs=latest_csv_row['input/output tokens'].strip()
latest_1st_token_latency=latest_csv_row[latency_1st_token]
latest_2_avg_latency=latest_csv_row[latency_2_avg]
key1=latest_csv_model+'-'+latest_csv_input_output_pairs+'-'+'1st'
key2=latest_csv_model+'-'+latest_csv_input_output_pairs+'-'+'2nd'
best_last1_value=best_in_dict(csv_dict, key1, latest_1st_token_latency)
best_last2_value=best_in_dict(csv_dict, key2, latest_2_avg_latency)
best_last1[latest_csv_ind]=best_last1_value
best_diff1[latest_csv_ind]=round((best_last1_value-latest_1st_token_latency)*100/best_last1_value,2)
best_last2[latest_csv_ind]=best_last2_value
best_diff2[latest_csv_ind]=round((best_last2_value-latest_2_avg_latency)*100/best_last2_value,2)
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['model'].strip()
previous_csv_input_output_pairs=previous_csv_row['input/output tokens'].strip()
if latest_csv_model==previous_csv_model and latest_csv_input_output_pairs==previous_csv_input_output_pairs:
previous_1st_token_latency=previous_csv_row[latency_1st_token]
previous_2_avg_latency=previous_csv_row[latency_2_avg]
if previous_1st_token_latency > 0.0 and previous_2_avg_latency > 0.0:
last1[latest_csv_ind]=previous_1st_token_latency
diff1[latest_csv_ind]=round((previous_1st_token_latency-latest_1st_token_latency)*100/previous_1st_token_latency,2)
last2[latest_csv_ind]=previous_2_avg_latency
diff2[latest_csv_ind]=round((previous_2_avg_latency-latest_2_avg_latency)*100/previous_2_avg_latency,2)
in_previous_flag=True
if not in_previous_flag:
last1[latest_csv_ind]=pd.NA
diff1[latest_csv_ind]=pd.NA
last2[latest_csv_ind]=pd.NA
diff2[latest_csv_ind]=pd.NA
latest_csv.insert(loc=3,column='last1',value=last1)
latest_csv.insert(loc=4,column='diff1(%)',value=diff1)
latest_csv.insert(loc=5,column='last2',value=last2)
latest_csv.insert(loc=6,column='diff2(%)',value=diff2)
latest_csv.insert(loc=7,column='best 1',value=best_last1)
latest_csv.insert(loc=8,column='best diff1(%)',value=best_diff1)
latest_csv.insert(loc=9,column='best 2',value=best_last2)
latest_csv.insert(loc=10,column='best diff2(%)',value=best_diff2)
diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, threshold=highlight_threshold)
subset1=['diff1(%)','diff2(%)']
subset2=['best diff1(%)','best diff2(%)']
columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}', 'peak mem (GB)': '{:.2f}',
'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'model loading time (s)': '{:.2f}'}
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
html_output = styled_df.set_table_attributes("border=1").render()
with open(daily_html, 'w') as f:
f.write(html_output)
else:
latest_csv.to_html(daily_html)
if args.baseline_path and not diffs_within_normal_range:
print("The diffs are outside the normal range: %" + str(highlight_threshold))
return 1
return 0
if __name__ == "__main__":
sys.exit(main())