| .. | ||
| minicpm-llama3-v2.5.py | ||
| minicpm_v_2_6.py | ||
| README.md | ||
| speech_paraformer-large.py | ||
Run Large Multimodal Model on Intel NPU
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.
Verified Models
| Model | Model Link | 
|---|---|
| MiniCPM-Llama3-V-2_5 | openbmb/MiniCPM-Llama3-V-2_5 | 
| MiniCPM-V-2_6 | openbmb/MiniCPM-V-2_6 | 
| Speech_Paraformer-Large | iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch | 
Please refer to Quickstart for details about verified platforms.
0. Prerequisites
For ipex-llm NPU support, please refer to Quickstart for details about the required preparations.
1. Install
1.1 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
# install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]
pip install torchvision
# [optional] for MiniCPM-V-2_6
pip install timm torch==2.1.2 torchvision==0.16.2
# [optional] for Speech_Paraformer-Large
pip install funasr==1.1.14
pip install modelscope==1.20.1 torch==2.1.2 torchaudio==2.1.2
Please refer to Quickstart for more details about ipex-llm installation on Intel NPU.
1.2 Runtime Configurations
Please refer to Quickstart for environment variables setting based on your device.
2. Run Optimized Models
The examples below show how to run the optimized HuggingFace & FunASR model implementations on Intel NPU, including
2.1 Run MiniCPM-Llama3-V-2_5 & MiniCPM-V-2_6
# to run MiniCPM-Llama3-V-2_5
python minicpm-llama3-v2.5.py --save-directory <converted_model_path>
# to run MiniCPM-V-2_6
python minicpm_v_2_6.py --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the model (e.g.openbmb/MiniCPM-Llama3-V-2_5for MiniCPM-Llama3-V-2_5) to be downloaded, or the path to the huggingface checkpoint folder.image-url-or-path IMAGE_URL_OR_PATH: argument defining the image to be infered. It is default to be 'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be"What is in this image?".--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.--max-context-len MAX_CONTEXT_LEN: argument defining the maximum sequence length for both input and output tokens. It is default to be1024.--max-prompt-len MAX_PROMPT_LEN: argument defining the maximum number of tokens that the input prompt can contain. It is default to be512.--low-bit LOW_BIT: argument defining the low bit optimizations that will be applied to the model. Current available options are"sym_int4","asym_int4"and"sym_int8", with"sym_int4"as the default.--save-directory SAVE_DIRECTORY: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATHwill be loaded, otherwise the lowbit model inSAVE_DIRECTORYwill be loaded.
Troubleshooting
Accuracy Tuning
If you enconter output issues when running the examples, you could try the following methods to tune the accuracy:
- 
Before running the example, consider setting an additional environment variable
IPEX_LLM_NPU_QUANTIZATION_OPT=1to enhance output quality. - 
If you are using the default
LOW_BITvalue (i.e.sym_int4optimizations), you could try to use--low-bit "asym_int4"instead to tune the output quality. - 
You could refer to the Quickstart for more accuracy tuning strategies.
 
Important
Please note that to make the above methods taking effect, you must specify a new folder for
SAVE_DIRECTORY. Reusing the sameSAVE_DIRECTORYwill load the previously saved low-bit model, and thus making the above accuracy tuning strategies ineffective.
Sample Output
openbmb/MiniCPM-V-2_6
Inference time: xxxx s
-------------------- Input --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
What is in this image?
-------------------- Output --------------------
The image features a young child holding and showing off a white teddy bear wearing a pink dress. The background includes some red flowers and a stone wall, suggesting an outdoor setting.
The sample input image is (which is fetched from COCO dataset):
2.2 Run Speech_Paraformer-Large
# to run Speech_Paraformer-Large
python speech_paraformer-large.py --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the asr repo id for the model (i.e.iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch) to be downloaded, or the path to the asr checkpoint folder.--low-bit LOW_BIT: argument defining the low bit optimizations that will be applied to the model. It is default to besym_int8,sym_int4can also be used.--save-directory SAVE_DIRECTORY: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATHwill be loaded, otherwise the lowbit model inSAVE_DIRECTORYwill be loaded.
Sample Output
iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch
# speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav
rtf_avg: 0.090: 100%|███████████████████████████████████| 1/1 [00:01<00:00,  1.18s/it]
[{'key': 'asr_example', 'text': '正 是 因 为 存 在 绝 对 正 义 所 以 我 们 接 受 现 实 的 相 对 正 义 但 是 不 要 因 为 现 实 的 相 对 正 义 我 们 就 认 为 这 个 世 界 没 有 正 义 因 为 如 果 当 你 认 为 这 个 世 界 没 有 正 义'}]
# https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav
rtf_avg: 0.232: 100%|███████████████████████████████████| 1/1 [00:01<00:00,  1.29s/it]
[{'key': 'asr_example_zh', 'text': '欢 迎 大 家 来 体 验 达 摩 院 推 出 的 语 音 识 别 模 型'}]
			
		