* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			87 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
import argparse
 | 
						|
import time
 | 
						|
import numpy as np
 | 
						|
 | 
						|
 | 
						|
torch.nn.Linear.reset_parameters = lambda x: None
 | 
						|
seed=42
 | 
						|
torch.manual_seed(seed)
 | 
						|
np.random.seed(seed)
 | 
						|
 | 
						|
STARCODER_PROMPT_FORMAT = "{prompt}"
 | 
						|
prompt = "def dfs_print_Fibonacci_sequence(n):"
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mistral model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
 | 
						|
                        help='The huggingface repo id for the Mistral (e.g. `bigcode/starcoder` and `bigcode/tiny_starcoder_py`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default=prompt,
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=128,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model in optimized bf16 here.
 | 
						|
    # Set `speculative=True`` to enable speculative decoding,
 | 
						|
    # it only works when load_in_low_bit="fp16" on Intel GPU or load_in_low_bit="bf16" on latest Intel Xeon CPU
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 optimize_model=True,
 | 
						|
                                                 torch_dtype=torch.bfloat16,
 | 
						|
                                                 load_in_low_bit="bf16",
 | 
						|
                                                 speculative=True,
 | 
						|
                                                 torchscript=True,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 use_cache=True)
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = STARCODER_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						|
        inputs = tokenizer(prompt, return_tensors='pt')
 | 
						|
        input_ids = inputs.input_ids.to(model.device)
 | 
						|
        actual_in_len = input_ids.shape[1]
 | 
						|
        print("actual input_ids length:" + str(actual_in_len))
 | 
						|
        attention_mask = inputs.attention_mask.to(model.device)
 | 
						|
 | 
						|
        # warmup
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict,
 | 
						|
                                attention_mask=attention_mask,
 | 
						|
                                do_sample=False)
 | 
						|
        output_str = tokenizer.decode(output[0])
 | 
						|
 | 
						|
        # speculative decoding
 | 
						|
        st = time.perf_counter()
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict,
 | 
						|
                                attention_mask=attention_mask,
 | 
						|
                                do_sample=False)
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
        end = time.perf_counter()
 | 
						|
 | 
						|
        print(output_str)
 | 
						|
        print(f"Tokens generated {model.n_token_generated}")
 | 
						|
        print(f"E2E Generation time {(end - st):.4f}s")
 | 
						|
        print(f"First token latency {model.first_token_time:.4f}s")
 |