ipex-llm/python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
Qiyuan Gong c957ea3831
Add axolotl main support and axolotl Llama-3-8B QLoRA example (#10984)
* Support axolotl main (796a085).
* Add axolotl Llama-3-8B QLoRA example.
* Change `sequence_len` to 256 for alpaca, and revert `lora_r` value.
* Add example to quick_start.
2024-05-14 13:43:59 +08:00

70 lines
1.3 KiB
YAML

# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/lora.yml
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 256
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
# adamw_bnb_8bit will lead to OOM
# optimizer: adamw_bnb_8bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
# flash_attention is not supported
flash_attention: false
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens: