ipex-llm/python/llm/test/langchain/test_langchain.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

98 lines
3.5 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ipex_llm.langchain.embeddings import *
from ipex_llm.langchain.llms import *
import pytest
from unittest import TestCase
import os
class Test_Models_Basics(TestCase):
def setUp(self):
self.llama_model_path = os.environ.get('LLAMA_INT4_CKPT_PATH')
self.bloom_model_path = os.environ.get('BLOOM_INT4_CKPT_PATH')
self.gptneox_model_path = os.environ.get('GPTNEOX_INT4_CKPT_PATH')
self.starcoder_model_path = os.environ.get('STARCODER_INT4_CKPT_PATH')
thread_num = os.environ.get('THREAD_NUM')
if thread_num is not None:
self.n_threads = int(thread_num)
else:
self.n_threads = 2
def test_langchain_llm_embedding_llama(self):
bigdl_embeddings = LlamaEmbeddings(
model_path=self.llama_model_path)
text = "This is a test document."
query_result = bigdl_embeddings.embed_query(text)
doc_result = bigdl_embeddings.embed_documents([text])
def test_langchain_llm_embedding_gptneox(self):
bigdl_embeddings = GptneoxEmbeddings(
model_path=self.gptneox_model_path)
text = "This is a test document."
query_result = bigdl_embeddings.embed_query(text)
doc_result = bigdl_embeddings.embed_documents([text])
def test_langchain_llm_embedding_bloom(self):
bigdl_embeddings = BloomEmbeddings(
model_path=self.bloom_model_path)
text = "This is a test document."
query_result = bigdl_embeddings.embed_query(text)
doc_result = bigdl_embeddings.embed_documents([text])
def test_langchain_llm_embedding_starcoder(self):
bigdl_embeddings = StarcoderEmbeddings(
model_path=self.starcoder_model_path)
text = "This is a test document."
query_result = bigdl_embeddings.embed_query(text)
doc_result = bigdl_embeddings.embed_documents([text])
def test_langchain_llm_llama(self):
llm = LlamaLLM(
model_path=self.llama_model_path,
max_tokens=32,
n_threads=self.n_threads)
question = "What is AI?"
result = llm(question)
def test_langchain_llm_gptneox(self):
llm = GptneoxLLM(
model_path=self.gptneox_model_path,
max_tokens=32,
n_threads=self.n_threads)
question = "What is AI?"
result = llm(question)
def test_langchain_llm_bloom(self):
llm = BloomLLM(
model_path=self.bloom_model_path,
max_tokens=32,
n_threads=self.n_threads)
question = "What is AI?"
result = llm(question)
def test_langchain_llm_starcoder(self):
llm = StarcoderLLM(
model_path=self.starcoder_model_path,
max_tokens=32,
n_threads=self.n_threads)
question = "What is AI?"
result = llm(question)
if __name__ == '__main__':
pytest.main([__file__])