ipex-llm/python/llm/src/ipex_llm/transformers/models/mixtral.py
2024-12-27 14:17:11 +08:00

576 lines
26 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mixtral model."""
import math
from typing import Optional, Tuple, Union, List
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
)
import torch
from torch import nn
import torch.nn.functional as F
from ipex_llm.ggml.quantize import ggml_tensor_qtype
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_decoding_fast_path
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
from ipex_llm.transformers.low_bit_linear import IQ2_XXS
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def mixtral_moeblock_forward(self,
hidden_states: torch.Tensor):
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
bs = hidden_states.shape[0]
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
if bs == 1:
selected_experts = selected_experts[0].cpu().tolist()
for idx in range(self.top_k):
exp_id = selected_experts[idx]
expert_layer = self.experts[exp_id]
weight = routing_weights[:, idx]
if idx == 0:
final_hidden_states = expert_layer(hidden_states, weight)
else:
final_hidden_states = final_hidden_states + expert_layer(hidden_states, weight)
elif bs < 256 and hidden_states.device.type == 'xpu':
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype, device=hidden_states.device)
import xe_linear
indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx_list = indexes[0][expert_idx]
top_x_list = indexes[1][expert_idx]
if len(idx_list) == 0:
continue
top_x = torch.tensor(top_x_list, dtype=torch.long, device=hidden_states.device)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state,
routing_weights[top_x_list, idx_list, None])
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
else:
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype,
device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts,
num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state,
routing_weights[top_x_list, idx_list, None])
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
def mixtral_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor]=None,
position_ids: Optional[torch.LongTensor]=None,
past_key_value: Optional[Tuple[torch.Tensor]]=None,
output_attentions: bool=False,
use_cache: bool=False,
padding_mask: Optional[torch.Tensor]=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value.seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# diasble it for now as it will cause output change for unknown reason
# elif decoding_fast_path and self.q_proj.qtype == IQ2_XXS:
# # this path self.v_proj use q4_0
# hidden_states = hidden_states.view(1, -1)
# cache_k = past_key_value.key_cache[self.layer_idx]
# cache_v = past_key_value.value_cache[self.layer_idx]
# kv_seq_len = cache_k.shape[-2]
# import xe_linear
# query_states, key_states = xe_linear.forward_qk(hidden_states,
# self.q_proj.weight,
# self.k_proj.weight,
# position_ids,
# cache_k,
# self.q_proj.weight.qtype,
# kv_seq_len,
# self.head_dim,
# 10000)
# kv_seq_len += 1
# # update past_key_value's seem_tokens and kv caches.
# if self.layer_idx == 0:
# past_key_value.seen_tokens = kv_seq_len
# # update value_states
# value_states = self.v_proj(hidden_states)
# value_states = value_states.view(bsz, q_len,
# self.num_key_value_heads, self.head_dim).transpose(1, 2)
# new_size = (cache_v.size(0),
# cache_v.size(1),
# cache_v.size(2) + value_states.size(2),
# cache_v.size(3))
# new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
# new_cache_v[:, :, cache_v.size(2):cache_v.size(2)+value_states.size(2), :] = value_states
# past_key_value.key_cache[self.layer_idx] = key_states
# past_key_value.value_cache[self.layer_idx] = new_cache_v
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} for "
"auto-regressive decodingwith k/v caching, please make sure "
"to initialize the attention class with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "mixtral")
if past_key_value is not None:
# update the number of seen tokens
if self.layer_idx == 0:
past_key_value.seen_tokens += key_states.shape[-2]
# reuse k, v, self_attention
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
if not self.training and not hidden_states.requires_grad:
fsdp_flag = use_flash_attention(query_states, key_states)
else:
fsdp_flag = False
if fsdp_flag:
attention_dtype = torch.float16 # use fp16 for flash attention
else:
attention_dtype = original_dtype
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
if fsdp_flag:
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
key_states,
value_states,
is_causal=True)
attn_weights = None
elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
import xe_addons
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
attn_weights = torch.matmul(
query_states.to(key_states.dtype),
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
f" but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
f" but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.\
softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def mixtral_mlp_forward(
self,
x: torch.Tensor,
routing_weights
) -> torch.Tensor:
qtype = getattr(self.w1, "qtype", None)
if mlp_fusion_check(x, qtype, self.training):
import xe_linear
return self.w2(xe_linear.mlp_forward_xpu(
x, self.w1.weight.data, self.w3.weight.data,
x.shape[0], x.shape[1], self.w1.out_len,
SILU, qtype,
)) * routing_weights
else:
current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
current_hidden_states = self.w2(current_hidden_states)
return routing_weights * current_hidden_states
def mixtral_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
# to be compatible with transformers>=4.37.0
self._use_flash_attention_2 = self.config._attn_implementation == "flash_attention_2"
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None
else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False, "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") # noqa
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds") # noqa
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
invalidInputError(
False,
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " # noqa
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask \
if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # noqa
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
# bigdl-llm changes:
#
# Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
#
# When the model is partitioned on two different devices using
# `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
# added to each layer's `forward``, which will result in moving `attention_mask`
# and `position_ids`, which allocated on device:0, to other devices for each
# decoder layer not in device:0.
#
# To avoid this, we move `attention_mask` and `position_ids` to the device of
# the current layer before the forward call, so that the moving is only done once
# for each devices other than devie:0.
#
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() \
if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] # noqa
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)