147 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from bigdl.llm.transformers import *
 | 
						|
 | 
						|
 | 
						|
def convert(repo_id_or_model_path, model_family, tmp_path):
 | 
						|
    from bigdl.llm import llm_convert
 | 
						|
    original_llm_path = repo_id_or_model_path
 | 
						|
    bigdl_llm_path = llm_convert(
 | 
						|
        model=original_llm_path,
 | 
						|
        outfile='./',
 | 
						|
        outtype='int4',
 | 
						|
        tmp_path=tmp_path,
 | 
						|
        model_family=model_family)
 | 
						|
 | 
						|
    return bigdl_llm_path
 | 
						|
 | 
						|
def load(model_path, model_family, n_threads):
 | 
						|
    model_family_to_class = {
 | 
						|
        "llama": LlamaForCausalLM,
 | 
						|
        "gptneox": GptneoxForCausalLM,
 | 
						|
        "bloom": BloomForCausalLM,
 | 
						|
        "starcoder": StarcoderForCausalLM,
 | 
						|
        "chatglm": ChatGLMForCausalLM
 | 
						|
    }
 | 
						|
 | 
						|
    if model_family in model_family_to_class:
 | 
						|
        llm_causal = model_family_to_class[model_family]
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Unknown model family: {model_family}")
 | 
						|
 | 
						|
    llm = llm_causal.from_pretrained(
 | 
						|
        pretrained_model_name_or_path=model_path,
 | 
						|
        native=True,
 | 
						|
        dtype="int4",
 | 
						|
        n_threads=n_threads)
 | 
						|
 | 
						|
    return llm
 | 
						|
 | 
						|
def inference(llm, repo_id_or_model_path, model_family, prompt):
 | 
						|
 | 
						|
    if model_family in ['llama', 'gptneox', 'bloom', 'starcoder', 'chatglm']:
 | 
						|
        # ------ Option 1: Use bigdl-llm based tokenizer
 | 
						|
        print('-'*20, ' bigdl-llm based tokenizer ', '-'*20)
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        # please note that the prompt here can either be a string or a list of string
 | 
						|
        tokens_id = llm.tokenize(prompt)
 | 
						|
        output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
 | 
						|
        output = llm.batch_decode(output_tokens_id)
 | 
						|
        
 | 
						|
        print(f'Inference time: {time.time()-st} s')
 | 
						|
        print(f'Output:\n{output}')
 | 
						|
        
 | 
						|
        # ------- Option 2: Use HuggingFace transformers tokenizer
 | 
						|
        print('-'*20, ' HuggingFace transformers tokenizer ', '-'*20)
 | 
						|
        
 | 
						|
        print('Please note that the loading of HuggingFace transformers tokenizer may take some time.\n')
 | 
						|
        # here is only a workaround for default example model 'decapoda-research/llama-7b-hf' in LLaMA family,
 | 
						|
        # due to its out-of-date 'tokenizer_class' defined in its tokenizer_config.json.
 | 
						|
        
 | 
						|
        # for most cases, you could use `AutoTokenizer`.
 | 
						|
        if model_family == 'llama':
 | 
						|
            from transformers import LlamaTokenizer
 | 
						|
            tokenizer = LlamaTokenizer.from_pretrained(repo_id_or_model_path)
 | 
						|
        else:
 | 
						|
            from transformers import AutoTokenizer
 | 
						|
            tokenizer = AutoTokenizer.from_pretrained(repo_id_or_model_path)
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        # please note that the prompt here can either be a string or a list of string
 | 
						|
        tokens_id = tokenizer(prompt).input_ids
 | 
						|
        output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
 | 
						|
        output = tokenizer.batch_decode(output_tokens_id)
 | 
						|
 | 
						|
        print(f'Inference time: {time.time()-st} s')
 | 
						|
        print(f'Output:\n{output}')
 | 
						|
 | 
						|
        # Option 3: fast forward
 | 
						|
        print('-'*20, ' fast forward ', '-'*20)
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        output = llm(prompt, # please note that the prompt here can ONLY be a string
 | 
						|
                     max_tokens=32)
 | 
						|
 | 
						|
        print(f'Inference time (fast forward): {time.time()-st} s')
 | 
						|
        print(f'Output:\n{output}')
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description='INT4 pipeline example')
 | 
						|
    parser.add_argument('--thread-num', type=int, default=2, required=True,
 | 
						|
                        help='Number of threads to use for inference')
 | 
						|
    parser.add_argument('--model-family', type=str, default='llama', required=True,
 | 
						|
                        choices=["llama", "llama2", "bloom", "gptneox", "starcoder", "chatglm"],
 | 
						|
                        help="The model family of the large language model (supported option: 'llama', 'llama2', "
 | 
						|
                             "'gptneox', 'bloom', 'starcoder', 'chatglm')")
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, required=True,
 | 
						|
                        help='The path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default='Once upon a time, there existed a little girl who liked to have adventures. ',
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--tmp-path', type=str, default='/tmp',
 | 
						|
                        help='path to store intermediate model during the conversion process')
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    repo_id_or_model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Currently, we can directly use llama related implementation to run llama2 models
 | 
						|
    if args.model_family == 'llama2':
 | 
						|
        args.model_family = 'llama'
 | 
						|
 | 
						|
    # Step 1: convert original model to BigDL llm model
 | 
						|
    bigdl_llm_path = convert(repo_id_or_model_path=repo_id_or_model_path,
 | 
						|
                             model_family=args.model_family,
 | 
						|
                             tmp_path=args.tmp_path)
 | 
						|
    
 | 
						|
    # Step 2: load int4 model
 | 
						|
    llm = load(model_path=bigdl_llm_path,
 | 
						|
               model_family=args.model_family,
 | 
						|
               n_threads=args.thread_num)
 | 
						|
 | 
						|
    # Step 3: inference
 | 
						|
    inference(llm=llm,
 | 
						|
              repo_id_or_model_path=repo_id_or_model_path,
 | 
						|
              model_family=args.model_family,
 | 
						|
              prompt=args.prompt)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |