186 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# Some parts of this file is adapted from
 | 
						|
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
 | 
						|
# which is licensed under the MIT license:
 | 
						|
#
 | 
						|
# MIT License
 | 
						|
# 
 | 
						|
# Copyright (c) 2023 MIT HAN Lab
 | 
						|
# 
 | 
						|
# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
# of this software and associated documentation files (the "Software"), to deal
 | 
						|
# in the Software without restriction, including without limitation the rights
 | 
						|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
# copies of the Software, and to permit persons to whom the Software is
 | 
						|
# furnished to do so, subject to the following conditions:
 | 
						|
 | 
						|
# The above copyright notice and this permission notice shall be included in all
 | 
						|
# copies or substantial portions of the Software.
 | 
						|
 | 
						|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
# SOFTWARE.
 | 
						|
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
import sys
 | 
						|
 | 
						|
# todo: support more model class
 | 
						|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
 | 
						|
from transformers import TextIteratorStreamer
 | 
						|
from transformers.tools.agents import StopSequenceCriteria
 | 
						|
from transformers.generation.stopping_criteria import StoppingCriteriaList
 | 
						|
 | 
						|
from colorama import Fore
 | 
						|
 | 
						|
from bigdl.llm import optimize_model
 | 
						|
from kv_cache import StartRecentKVCache
 | 
						|
 | 
						|
HUMAN_ID = "<human>"
 | 
						|
BOT_ID = "<bot>"
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
						|
    print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
 | 
						|
    outputs = model(
 | 
						|
        input_ids=input_ids,
 | 
						|
        past_key_values=past_key_values,
 | 
						|
        use_cache=True,
 | 
						|
    )
 | 
						|
    past_key_values = outputs.past_key_values
 | 
						|
    pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
    generated_ids = [pred_token_idx.item()]
 | 
						|
    pos = 0
 | 
						|
    for _ in range(max_gen_len - 1):
 | 
						|
        outputs = model(
 | 
						|
            input_ids=pred_token_idx,
 | 
						|
            past_key_values=past_key_values,
 | 
						|
            use_cache=True,
 | 
						|
        )
 | 
						|
        past_key_values = outputs.past_key_values
 | 
						|
        pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
        generated_ids.append(pred_token_idx.item())
 | 
						|
        generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
 | 
						|
                                          clean_up_tokenization_spaces=True,
 | 
						|
                                          spaces_between_special_tokens=False)
 | 
						|
 | 
						|
        now = len(generated_text) - 1
 | 
						|
        if now > pos:
 | 
						|
            if '\n<' in generated_text:
 | 
						|
                break
 | 
						|
            else:
 | 
						|
                print("".join(generated_text[pos:now]), end="", flush=True)
 | 
						|
                pos = now
 | 
						|
 | 
						|
        if pred_token_idx == tokenizer.eos_token_id:
 | 
						|
            break
 | 
						|
    print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
 | 
						|
    return past_key_values
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
 | 
						|
    past_key_values = None
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        if user_input == "stop": # let's stop the conversation when user input "stop"
 | 
						|
            break
 | 
						|
        prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
 | 
						|
        )
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def chatglm2_stream_chat(model, tokenizer):
 | 
						|
    chat_history = []
 | 
						|
    past_key_values = None
 | 
						|
    current_length = 0
 | 
						|
    stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
 | 
						|
    max_past_length = 2048
 | 
						|
 | 
						|
    while True:
 | 
						|
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
						|
        if user_input == "stop": # let's stop the conversation when user input "stop"
 | 
						|
            break
 | 
						|
        print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
 | 
						|
        prompt = f"问:{user_input}\n答:"
 | 
						|
        for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
 | 
						|
                                                                         history=chat_history,
 | 
						|
                                                                         stopping_criteria=stopping_criteria,
 | 
						|
                                                                         past_key_values=past_key_values,
 | 
						|
                                                                         return_past_key_values=True):
 | 
						|
            print(response[current_length:], end="", flush=True)
 | 
						|
            current_length = len(response)
 | 
						|
            if past_key_values[0][0].shape[0] > max_past_length:
 | 
						|
                # To avoid out of memory, only keep recent key_values
 | 
						|
                new_values_list = []
 | 
						|
                for i in range(len(past_key_values)):
 | 
						|
                    new_value = []
 | 
						|
                    for val in past_key_values[i]:
 | 
						|
                        new_v = val[-max_past_length:]
 | 
						|
                        new_value.append(new_v)
 | 
						|
                    new_values_list.append(tuple(new_value))
 | 
						|
                past_key_values = tuple(new_values_list)
 | 
						|
 | 
						|
def auto_select_model(model_name):
 | 
						|
    try:
 | 
						|
        try:
 | 
						|
            model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                        low_cpu_mem_usage=True,
 | 
						|
                                                        torch_dtype="auto",
 | 
						|
                                                        trust_remote_code=True,
 | 
						|
                                                        use_cache=True)
 | 
						|
        except:
 | 
						|
            model = AutoModel.from_pretrained(model_path,
 | 
						|
                                             low_cpu_mem_usage=True,
 | 
						|
                                             torch_dtype="auto",
 | 
						|
                                             trust_remote_code=True,
 | 
						|
                                             use_cache=True)
 | 
						|
    except:
 | 
						|
        print("Sorry, the model you entered is not supported in installer.")
 | 
						|
        sys.exit()
 | 
						|
    
 | 
						|
    return model
 | 
						|
  
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--model-path", type=str, help="path to an llm")
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    model_path = args.model_path
 | 
						|
 | 
						|
    model = auto_select_model(model_path)
 | 
						|
    model = optimize_model(model)
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
 | 
						|
        chatglm2_stream_chat(model=model, tokenizer=tokenizer)
 | 
						|
    else:
 | 
						|
        kv_cache = StartRecentKVCache()
 | 
						|
        stream_chat(model=model,
 | 
						|
                    tokenizer=tokenizer,
 | 
						|
                    kv_cache=kv_cache)
 |