* first commit of transformer int4 and pipeline * basic examples temp save for embeddings support embeddings and docqa exaple * fix based on comment * small fix
		
			
				
	
	
		
			70 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
						|
# physically located elsewhere.
 | 
						|
# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
						|
# only search the first bigdl package and end up finding only one sub-package.
 | 
						|
 | 
						|
import argparse
 | 
						|
 | 
						|
from bigdl.llm.langchain.llms import BigdlNativeLLM
 | 
						|
from langchain import PromptTemplate, LLMChain
 | 
						|
from langchain.callbacks.manager import CallbackManager
 | 
						|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    
 | 
						|
    question = args.question
 | 
						|
    model_path = args.model_path
 | 
						|
    model_family = args.model_family
 | 
						|
    n_threads = args.thread_num
 | 
						|
    template ="""{question}"""
 | 
						|
 | 
						|
    prompt = PromptTemplate(template=template, input_variables=["question"])
 | 
						|
 | 
						|
    # Callbacks support token-wise streaming
 | 
						|
    callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
 | 
						|
    
 | 
						|
    # Verbose is required to pass to the callback manager
 | 
						|
    llm = BigdlNativeLLM(
 | 
						|
        model_path=model_path,
 | 
						|
        model_family=model_family,
 | 
						|
        n_threads=n_threads,
 | 
						|
        callback_manager=callback_manager, 
 | 
						|
        verbose=True
 | 
						|
    )
 | 
						|
 | 
						|
    llm_chain = LLMChain(prompt=prompt, llm=llm)
 | 
						|
 | 
						|
    llm_chain.run(question)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Streaming Chat Example')
 | 
						|
    parser.add_argument('-x','--model-family', type=str, required=True,
 | 
						|
                        choices=["llama", "bloom", "gptneox"],
 | 
						|
                        help='the model family')
 | 
						|
    parser.add_argument('-m','--model-path', type=str, required=True,
 | 
						|
                        help='the path to the converted llm model')
 | 
						|
    parser.add_argument('-q', '--question', type=str, default='What is AI?',
 | 
						|
                        help='qustion you want to ask.')
 | 
						|
    parser.add_argument('-t','--thread-num', type=int, default=2,
 | 
						|
                        help='Number of threads to use for inference')
 | 
						|
    args = parser.parse_args()
 | 
						|
    
 | 
						|
    main(args)
 |