ipex-llm/python/llm/example/CPU/Speculative-Decoding/Self-Speculation/starcoder/speculative.py
2024-05-29 13:15:27 -07:00

92 lines
3.9 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import argparse
import time
import numpy as np
torch.nn.Linear.reset_parameters = lambda x: None
seed=42
torch.manual_seed(seed)
np.random.seed(seed)
STARCODER_PROMPT_FORMAT = "{prompt}"
prompt = "def dfs_print_Fibonacci_sequence(n):"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mistral model')
parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
help='The huggingface repo id for the Mistral (e.g. `bigcode/starcoder` and `bigcode/tiny_starcoder_py`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default=prompt,
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=128,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in optimized bf16 here.
# Set `speculative=True`` to enable speculative decoding,
# it only works when load_in_low_bit="fp16" on Intel GPU or load_in_low_bit="bf16" on latest Intel Xeon CPU
model = AutoModelForCausalLM.from_pretrained(model_path,
optimize_model=True,
torch_dtype=torch.bfloat16,
load_in_low_bit="bf16",
speculative=True,
trust_remote_code=True,
use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
with torch.inference_mode():
prompt = STARCODER_PROMPT_FORMAT.format(prompt=args.prompt)
inputs = tokenizer(prompt, return_tensors='pt')
input_ids = inputs.input_ids.to(model.device)
actual_in_len = input_ids.shape[1]
print("actual input_ids length:" + str(actual_in_len))
attention_mask = inputs.attention_mask.to(model.device)
# warmup
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0])
# speculative decoding
st = time.perf_counter()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.perf_counter()
print(f"E2E Generation time {(end - st):.4f}s")
print(output_str)
# When the IPEX_CPU optimized models recive short prompts(length < 256)
# it will use normal generate() and has not these attr
from ipex_llm.transformers.convert import get_enable_ipex
_enable_ipex = get_enable_ipex()
if not _enable_ipex or actual_in_len >= 256:
print(f"Tokens generated {model.n_token_generated}")
print(f"First token latency {model.first_token_time:.4f}s")