* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
85 lines
3.6 KiB
Python
85 lines
3.6 KiB
Python
#
|
||
# Copyright 2016 The BigDL Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import torch
|
||
import time
|
||
import argparse
|
||
import numpy as np
|
||
|
||
from ipex_llm.transformers import AutoModelForCausalLM
|
||
from transformers import AutoTokenizer
|
||
|
||
# you could tune the prompt based on your own model,
|
||
# here the prompt tuning is adpated from https://huggingface.co/RWKV/HF_v5-Eagle-7B
|
||
def generate_prompt(instruction):
|
||
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
||
return f"""User: hi
|
||
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
||
User: {instruction}
|
||
Assistant:"""
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for RWKV5 model')
|
||
parser.add_argument('--repo-id-or-model-path', type=str, default="RWKV/HF_v5-Eagle-7B",
|
||
help='The huggingface repo id for the RWKV5 model to be downloaded'
|
||
', or the path to the huggingface checkpoint folder')
|
||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||
help='Prompt to infer')
|
||
parser.add_argument('--n-predict', type=int, default=32,
|
||
help='Max tokens to predict')
|
||
|
||
args = parser.parse_args()
|
||
model_path = args.repo_id_or_model_path
|
||
|
||
# Load model in 4 bit,
|
||
# which convert the relevant layers in the model into INT4 format
|
||
#
|
||
# Please note that for RWKV5 models, `optimize_model` is required to set as True
|
||
#
|
||
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||
load_in_4bit=True,
|
||
optimize_model=True,
|
||
trust_remote_code=True,
|
||
use_cache=True)
|
||
model = model.to('xpu')
|
||
|
||
# Load tokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||
trust_remote_code=True)
|
||
|
||
# Generate predicted tokens
|
||
with torch.inference_mode():
|
||
prompt = generate_prompt(instruction=args.prompt)
|
||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||
# ipex model needs a warmup, then inference time can be accurate
|
||
output = model.generate(input_ids,
|
||
max_new_tokens=args.n_predict)
|
||
|
||
# start inference
|
||
st = time.time()
|
||
output = model.generate(input_ids,
|
||
max_new_tokens=args.n_predict)
|
||
torch.xpu.synchronize()
|
||
end = time.time()
|
||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||
print(f'Inference time: {end-st} s')
|
||
print('-'*20, 'Prompt', '-'*20)
|
||
print(prompt)
|
||
print('-'*20, 'Output', '-'*20)
|
||
print(output_str)
|