ipex-llm/python/llm/src/ipex_llm/transformers/models/rwkv4.py
Yina Chen b6b70d1ba0
Divide core-xe packages (#11131)
* temp

* add batch

* fix style

* update package name

* fix style

* add workflow

* use temp version to run uts

* trigger performance test

* trigger win igpu perf

* revert workflow & setup
2024-05-28 12:00:18 +08:00

181 lines
6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/rwkv/modeling_rwkv.py
# which is licensed under Apache License 2.0:
#
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import List
def extract_key_value(self, hidden, state=None):
# Mix hidden with the previous timestep to produce key, value, receptance
if hidden.size(1) == 1 and state is not None:
shifted = state[1][:, :, self.layer_id]
else:
shifted = self.time_shift(hidden)
if state is not None:
shifted[:, 0] = state[1][:, :, self.layer_id]
if len(shifted.size()) == 2:
shifted = shifted.unsqueeze(1)
shifted = shifted.contiguous()
if not hasattr(self, "mixed_mix"):
self.mixed_mix = torch.cat([
self.time_mix_key.data,
self.time_mix_value.data,
self.time_mix_receptance.data,
]).to(dtype=hidden.dtype)
import xe_linear
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
key, value, receptance = mixed_result
key = self.key(key)
value = self.value(value)
receptance = torch.sigmoid(self.receptance(receptance))
if state is not None:
state[1][:, :, self.layer_id] = hidden[:, -1]
return receptance, key, value, state
def rwkv_linear_attention_xpu(
time_decay: torch.Tensor,
time_first: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
state: List[torch.Tensor]=None,
return_state: bool=False
):
if state is None:
num_state = torch.zeros(key.size(0), key.size(-1),
dtype=key.dtype, device=key.device)
den_state = torch.zeros(key.size(0), key.size(-1),
dtype=key.dtype, device=key.device)
max_state = torch.zeros(key.size(0), key.size(-1),
dtype=key.dtype, device=key.device) - 1e38
else:
num_state, den_state, max_state = state
num_state = num_state.contiguous()
den_state = den_state.contiguous()
max_state = max_state.contiguous()
time_decay = -torch.exp(time_decay)
# `num_state`, `den_state`, `max_state` will be modified during this call
import xe_linear
output = xe_linear.rwkv_linear_attention_v4(
time_decay,
time_first,
key,
value,
num_state,
den_state,
max_state,
)
if return_state or state is not None:
state = [num_state, den_state, max_state]
return output, state
def rwkv_attention_forward(
self,
hidden: torch.Tensor,
state: List[torch.Tensor]=None,
use_cache: bool=False,
):
receptance, key, value, state = extract_key_value(self, hidden, state=state)
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None
if hidden.device.type == "xpu":
self.time_decay.data = self.time_decay.data.to(dtype=key.dtype)
self.time_first.data = self.time_first.data.to(dtype=key.dtype)
rwkv, layer_state = rwkv_linear_attention_xpu(
self.time_decay,
self.time_first,
key,
value,
state=layer_state,
return_state=use_cache,
)
else:
from transformers.models.rwkv.modeling_rwkv import rwkv_linear_attention_cpu
rwkv, layer_state = rwkv_linear_attention_cpu(
self.time_decay,
self.time_first,
key,
value,
state=layer_state,
return_state=use_cache,
)
if layer_state is not None:
state[2][:, :, self.layer_id] = layer_state[0]
state[3][:, :, self.layer_id] = layer_state[1]
state[4][:, :, self.layer_id] = layer_state[2]
return self.output(receptance * rwkv), state
def rwkv_ffn_forward(
self,
hidden: torch.Tensor,
state: List[torch.Tensor]=None,
):
if hidden.size(1) == 1 and state is not None:
shifted = state[0][:, :, self.layer_id]
else:
shifted = self.time_shift(hidden)
if state is not None:
shifted[:, 0] = state[0][:, :, self.layer_id]
if len(shifted.size()) == 2:
shifted = shifted.unsqueeze(1)
shifted = shifted.contiguous()
if not hasattr(self, "mixed_mix"):
self.mixed_mix = torch.cat([self.time_mix_key.data,
self.time_mix_receptance.data]).to(dtype=hidden.dtype)
import xe_linear
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
key, receptance = mixed_result
key = torch.square(torch.relu(self.key(key)))
value = self.value(key)
receptance = torch.sigmoid(self.receptance(receptance))
if state is not None:
state[0][:, :, self.layer_id] = hidden[:, -1]
return receptance * value, state