* temp * add batch * fix style * update package name * fix style * add workflow * use temp version to run uts * trigger performance test * trigger win igpu perf * revert workflow & setup
181 lines
6 KiB
Python
181 lines
6 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/rwkv/modeling_rwkv.py
|
|
# which is licensed under Apache License 2.0:
|
|
#
|
|
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
|
|
from typing import List
|
|
|
|
|
|
def extract_key_value(self, hidden, state=None):
|
|
# Mix hidden with the previous timestep to produce key, value, receptance
|
|
if hidden.size(1) == 1 and state is not None:
|
|
shifted = state[1][:, :, self.layer_id]
|
|
else:
|
|
shifted = self.time_shift(hidden)
|
|
if state is not None:
|
|
shifted[:, 0] = state[1][:, :, self.layer_id]
|
|
if len(shifted.size()) == 2:
|
|
shifted = shifted.unsqueeze(1)
|
|
shifted = shifted.contiguous()
|
|
|
|
if not hasattr(self, "mixed_mix"):
|
|
self.mixed_mix = torch.cat([
|
|
self.time_mix_key.data,
|
|
self.time_mix_value.data,
|
|
self.time_mix_receptance.data,
|
|
]).to(dtype=hidden.dtype)
|
|
|
|
import xe_linear
|
|
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
|
key, value, receptance = mixed_result
|
|
|
|
key = self.key(key)
|
|
value = self.value(value)
|
|
receptance = torch.sigmoid(self.receptance(receptance))
|
|
if state is not None:
|
|
state[1][:, :, self.layer_id] = hidden[:, -1]
|
|
return receptance, key, value, state
|
|
|
|
|
|
def rwkv_linear_attention_xpu(
|
|
time_decay: torch.Tensor,
|
|
time_first: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
state: List[torch.Tensor]=None,
|
|
return_state: bool=False
|
|
):
|
|
if state is None:
|
|
num_state = torch.zeros(key.size(0), key.size(-1),
|
|
dtype=key.dtype, device=key.device)
|
|
den_state = torch.zeros(key.size(0), key.size(-1),
|
|
dtype=key.dtype, device=key.device)
|
|
max_state = torch.zeros(key.size(0), key.size(-1),
|
|
dtype=key.dtype, device=key.device) - 1e38
|
|
else:
|
|
num_state, den_state, max_state = state
|
|
num_state = num_state.contiguous()
|
|
den_state = den_state.contiguous()
|
|
max_state = max_state.contiguous()
|
|
|
|
time_decay = -torch.exp(time_decay)
|
|
|
|
# `num_state`, `den_state`, `max_state` will be modified during this call
|
|
import xe_linear
|
|
output = xe_linear.rwkv_linear_attention_v4(
|
|
time_decay,
|
|
time_first,
|
|
key,
|
|
value,
|
|
num_state,
|
|
den_state,
|
|
max_state,
|
|
)
|
|
|
|
if return_state or state is not None:
|
|
state = [num_state, den_state, max_state]
|
|
|
|
return output, state
|
|
|
|
|
|
def rwkv_attention_forward(
|
|
self,
|
|
hidden: torch.Tensor,
|
|
state: List[torch.Tensor]=None,
|
|
use_cache: bool=False,
|
|
):
|
|
receptance, key, value, state = extract_key_value(self, hidden, state=state)
|
|
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None
|
|
|
|
if hidden.device.type == "xpu":
|
|
self.time_decay.data = self.time_decay.data.to(dtype=key.dtype)
|
|
self.time_first.data = self.time_first.data.to(dtype=key.dtype)
|
|
rwkv, layer_state = rwkv_linear_attention_xpu(
|
|
self.time_decay,
|
|
self.time_first,
|
|
key,
|
|
value,
|
|
state=layer_state,
|
|
return_state=use_cache,
|
|
)
|
|
else:
|
|
from transformers.models.rwkv.modeling_rwkv import rwkv_linear_attention_cpu
|
|
rwkv, layer_state = rwkv_linear_attention_cpu(
|
|
self.time_decay,
|
|
self.time_first,
|
|
key,
|
|
value,
|
|
state=layer_state,
|
|
return_state=use_cache,
|
|
)
|
|
|
|
if layer_state is not None:
|
|
state[2][:, :, self.layer_id] = layer_state[0]
|
|
state[3][:, :, self.layer_id] = layer_state[1]
|
|
state[4][:, :, self.layer_id] = layer_state[2]
|
|
|
|
return self.output(receptance * rwkv), state
|
|
|
|
|
|
def rwkv_ffn_forward(
|
|
self,
|
|
hidden: torch.Tensor,
|
|
state: List[torch.Tensor]=None,
|
|
):
|
|
if hidden.size(1) == 1 and state is not None:
|
|
shifted = state[0][:, :, self.layer_id]
|
|
else:
|
|
shifted = self.time_shift(hidden)
|
|
if state is not None:
|
|
shifted[:, 0] = state[0][:, :, self.layer_id]
|
|
if len(shifted.size()) == 2:
|
|
shifted = shifted.unsqueeze(1)
|
|
shifted = shifted.contiguous()
|
|
|
|
if not hasattr(self, "mixed_mix"):
|
|
self.mixed_mix = torch.cat([self.time_mix_key.data,
|
|
self.time_mix_receptance.data]).to(dtype=hidden.dtype)
|
|
|
|
import xe_linear
|
|
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
|
key, receptance = mixed_result
|
|
|
|
key = torch.square(torch.relu(self.key(key)))
|
|
value = self.value(key)
|
|
receptance = torch.sigmoid(self.receptance(receptance))
|
|
|
|
if state is not None:
|
|
state[0][:, :, self.layer_id] = hidden[:, -1]
|
|
|
|
return receptance * value, state
|