* First push of bigdl-llm example for gptneox model family * Add some args and other small updates * Small updates * Add example for llama family models * Small fix * Small fix * Update for batch_decode api and change default model for llama example * Small fix * Small fix * Small fix * Small model family name fix and add example for bloom * Small fix * Small default prompt fix * Small fix * Change default prompt * Add sample output for inference * Hide example inference time
		
			
				
	
	
		
			120 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
 | 
						|
def convert_and_load(repo_id_or_model_path, n_threads):
 | 
						|
 | 
						|
    from bigdl.llm.ggml.transformers import AutoModelForCausalLM
 | 
						|
 | 
						|
    # here you may input the HuggingFace repo id directly as the value of `pretrained_model_name_or_path`.
 | 
						|
    # This will allow the pre-trained model to be downloaded directly from the HuggingFace repository.
 | 
						|
    # The downloaded model will then be converted to binary format with int4 dtype weights,
 | 
						|
    # and saved into the cache_dir folder.
 | 
						|
    #
 | 
						|
    # if you already have the pre-trained model downloaded, you can provide the path to
 | 
						|
    # the downloaded folder as the value of `pretrained_model_name_or_path``
 | 
						|
    llm = AutoModelForCausalLM.from_pretrained(
 | 
						|
        pretrained_model_name_or_path=repo_id_or_model_path,
 | 
						|
        model_family='llama',
 | 
						|
        dtype='int4',
 | 
						|
        cache_dir='./',
 | 
						|
        n_threads=n_threads)
 | 
						|
 | 
						|
    # if you want to explicitly convert the pre-trained model, you can use the `convert_model` API 
 | 
						|
    # to convert the downloaded Huggungface checkpoint first,
 | 
						|
    # and then load the binary checkpoint directly.
 | 
						|
    #
 | 
						|
    # from bigdl.llm.ggml import convert_model
 | 
						|
    #
 | 
						|
    # model_path = repo_id_or_model_path
 | 
						|
    # output_ckpt_path = convert_model(
 | 
						|
    #     input_path=model_path,
 | 
						|
    #     output_path='./',
 | 
						|
    #     dtype='int4',
 | 
						|
    #     model_family='llama')
 | 
						|
    #
 | 
						|
    # llm = AutoModelForCausalLM.from_pretrained(
 | 
						|
    #     pretrained_model_name_or_path=output_ckpt_path,
 | 
						|
    #     model_family='llama',
 | 
						|
    #     n_threads=n_threads)
 | 
						|
 | 
						|
    return llm
 | 
						|
 | 
						|
def inference(llm, prompt, repo_id_or_model_path):
 | 
						|
 | 
						|
    # Option 1: Use HuggingFace transformers tokenizer
 | 
						|
    print('-'*20, ' HuggingFace transformers tokenizer ', '-'*20)
 | 
						|
    from transformers import LlamaTokenizer
 | 
						|
 | 
						|
    print('Please note that the loading of HuggingFace transformers tokenizer may takes some time.\n')
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(repo_id_or_model_path)
 | 
						|
 | 
						|
    st = time.time()
 | 
						|
 | 
						|
    # please note that the prompt here can either be a string or a list of string
 | 
						|
    tokens_id = tokenizer(prompt).input_ids
 | 
						|
    output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
 | 
						|
    output = tokenizer.batch_decode(output_tokens_id)
 | 
						|
 | 
						|
    print(f'Inference time: {time.time()-st} s')
 | 
						|
    print(f'Output:\n{output}')
 | 
						|
 | 
						|
    # Option 2: Use bigdl-llm based tokenizer
 | 
						|
    print('-'*20, ' bigdl-llm based tokenizer ', '-'*20)
 | 
						|
    st = time.time()
 | 
						|
 | 
						|
    # please note that the prompt here can either be a string or a list of string
 | 
						|
    tokens_id = llm.tokenize(prompt)
 | 
						|
    output_tokens_id = llm.generate(tokens_id, max_new_tokens=32)
 | 
						|
    output = llm.batch_decode(output_tokens_id)
 | 
						|
 | 
						|
    print(f'Inference time: {time.time()-st} s')
 | 
						|
    print(f'Output:\n{output}')
 | 
						|
 | 
						|
    # Option 3: fast forward
 | 
						|
    print('-'*20, ' fast forward ', '-'*20)
 | 
						|
    st = time.time()
 | 
						|
 | 
						|
    output = llm(prompt, # please note that the prompt here can ONLY be a string
 | 
						|
                 max_tokens=32)
 | 
						|
 | 
						|
    print(f'Inference time (fast forward): {time.time()-st} s')
 | 
						|
    print(f'Output:\n{output}')
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description='LLaMA pipeline example')
 | 
						|
    parser.add_argument('--thread-num', type=int, default=2, required=True,
 | 
						|
                        help='Number of threads to use for inference')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf",
 | 
						|
                        help='The huggingface repo id for LLaMA family model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default='Q: What is AI? A:',
 | 
						|
                        help='Prompt to infer')
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    # Step 1: convert and load int4 model
 | 
						|
    llm = convert_and_load(repo_id_or_model_path=args.repo_id_or_model_path, n_threads=args.thread_num)
 | 
						|
 | 
						|
    # Step 2: conduct inference
 | 
						|
    inference(llm=llm, prompt=args.prompt, repo_id_or_model_path=args.repo_id_or_model_path)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |