101 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import requests
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer, CLIPImageProcessor
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
 | 
						|
                        help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
    n_predict = args.n_predict
 | 
						|
    
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                 load_in_low_bit="sym_int4",
 | 
						|
                                                 modules_to_not_convert=["vision_model"])
 | 
						|
    model = model.half().to('xpu')
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    query = args.prompt
 | 
						|
    image_processor = CLIPImageProcessor.from_pretrained(model_path)
 | 
						|
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path).convert('RGB')
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
						|
       
 | 
						|
    pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
 | 
						|
    pixel_values = pixel_values.to('xpu')
 | 
						|
 | 
						|
    question = "<image>" + query
 | 
						|
 | 
						|
    generation_config = {
 | 
						|
        "max_new_tokens": n_predict,
 | 
						|
        "do_sample": False,
 | 
						|
    }
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        model.chat(
 | 
						|
            pixel_values=None,
 | 
						|
            question=question,
 | 
						|
            generation_config=generation_config,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
        )
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        res = model.chat(
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            pixel_values=pixel_values,
 | 
						|
            question=question,
 | 
						|
            generation_config=generation_config,
 | 
						|
            history=[]
 | 
						|
        )
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print('-'*20, 'Input Image', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Input Prompt', '-'*20)
 | 
						|
    print(args.prompt)
 | 
						|
    print('-'*20, 'Chat Output', '-'*20)
 | 
						|
    print(res)
 |