* Add phi-3-vision example (HF-Automodels) * fix * fix * fix * Add phi-3-vision CPU example (HF-Automodels) * add in readme * fix * fix * fix * fix * use fp8 for gpu example * remove eval
105 lines
4.9 KiB
Python
105 lines
4.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import time
|
|
import torch
|
|
import argparse
|
|
import requests
|
|
|
|
from PIL import Image
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from transformers import AutoProcessor
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-vision-128k-instruct",
|
|
help='The huggingface repo id for the phi-3-vision model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_url_or_path
|
|
|
|
# Load model in FP8,
|
|
# which convert the relevant layers in the model into FP8 format
|
|
# We here use FP8 instead of INT4 for better output
|
|
# You could also try `'sym_int4'` for INT4, `'sym_int8'` for INT8 and `'fp6'` for FP6
|
|
# `_attn_implementation="eager"` is required for phi-3-vision
|
|
# `modules_to_not_convert=["vision_embed_tokens"]` and `model = model.half()` are for acceleration and are optional
|
|
|
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
trust_remote_code=True,
|
|
load_in_low_bit="fp8",
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"])
|
|
model = model.half().to('xpu')
|
|
|
|
# Load processor
|
|
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
# here the message formatting refers to https://huggingface.co/microsoft/Phi-3-vision-128k-instruct#sample-inference-code
|
|
messages = [
|
|
{"role": "user", "content": "<|image_1|>\n{prompt}".format(prompt=args.prompt)},
|
|
]
|
|
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path)
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw)
|
|
|
|
# Generate predicted tokens
|
|
with torch.inference_mode():
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
inputs = processor(prompt, [image], return_tensors="pt")
|
|
inputs = inputs.to('xpu')
|
|
output = model.generate(**inputs,
|
|
eos_token_id=processor.tokenizer.eos_token_id,
|
|
num_beams=1,
|
|
do_sample=False,
|
|
max_new_tokens=args.n_predict,
|
|
temperature=0.0)
|
|
# start inference
|
|
st = time.time()
|
|
|
|
inputs = processor(prompt, [image], return_tensors="pt")
|
|
inputs = inputs.to('xpu')
|
|
output = model.generate(**inputs,
|
|
eos_token_id=processor.tokenizer.eos_token_id,
|
|
num_beams=1,
|
|
do_sample=False,
|
|
max_new_tokens=args.n_predict,
|
|
temperature=0.0)
|
|
end = time.time()
|
|
print(f'Inference time: {end-st} s')
|
|
output_str = processor.decode(output[0],
|
|
skip_special_tokens=True,
|
|
clean_up_tokenization_spaces=False)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(f'Message: {messages}')
|
|
print(f'Image link/path: {image_path}')
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|