* Remove model with optimize_model=False in NPU verified models tables, and remove related example * Remove experimental in run optimized model section title * Unify model table order & example cmd * Move embedding example to separate folder & update quickstart example link * Add Quickstart reference in main NPU readme * Small fix * Small fix * Move save/load examples under NPU/HF-Transformers-AutoModels * Add low-bit and polish arguments for LLM Python examples * Small fix * Add low-bit and polish arguments for Multi-Model examples * Polish argument for Embedding models * Polish argument for LLM CPP examples * Add low-bit and polish argument for Save-Load examples * Add accuracy tuning tips for examples * Update NPU qucikstart accuracy tuning with low-bit optimizations * Add save/load section to qucikstart * Update CPP example sample output to EN * Add installation regarding cmake for CPP examples * Small fix * Small fix * Small fix * Small fix * Small fix * Small fix * Unify max prompt length to 512 * Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4 * Update based on comments * Small fix
106 lines
4.4 KiB
Python
106 lines
4.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
|
|
|
|
|
# you could tune the prompt based on your own model,
|
|
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
|
|
|
|
<</SYS>>
|
|
|
|
{prompt} [/INST]
|
|
"""
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--save-directory', type=str, default=None,
|
|
help='The path to save the low-bit model.')
|
|
parser.add_argument('--load-directory', type=str, default=None,
|
|
help='The path to load the low-bit model.')
|
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
|
help='Low bit optimizations that will be applied to the model.')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
save_directory = args.save_directory
|
|
load_directory = args.load_directory
|
|
|
|
if save_directory:
|
|
# first time to load and save
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
torch_dtype=torch.float16,
|
|
trust_remote_code=True,
|
|
attn_implementation="eager",
|
|
load_in_low_bit=args.low_bit,
|
|
optimize_model=True,
|
|
max_context_len=args.max_context_len,
|
|
max_prompt_len=args.max_prompt_len,
|
|
save_directory=save_directory
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
tokenizer.save_pretrained(save_directory)
|
|
print(f"Finish to load model from {model_path} and save to {save_directory}")
|
|
elif load_directory:
|
|
# load low-bit model
|
|
model = AutoModelForCausalLM.load_low_bit(
|
|
load_directory,
|
|
attn_implementation="eager",
|
|
torch_dtype=torch.float16,
|
|
optimize_model=True,
|
|
max_context_len=args.max_context_len,
|
|
max_prompt_len=args.max_prompt_len
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
|
|
print(f"Finish to load model from {load_directory}")
|
|
else:
|
|
invalidInputError(False,
|
|
"Both `--save-directory` and `--load-directory` are None, please provide one of this.")
|
|
|
|
# Generate predicted tokens
|
|
with torch.inference_mode():
|
|
for i in range(3):
|
|
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
|
st = time.time()
|
|
output = model.generate(
|
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
|
)
|
|
end = time.time()
|
|
|
|
print(f"Inference time: {end-st} s")
|
|
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
|
print("-" * 20, "Input", "-" * 20)
|
|
print(input_str)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
print("-" * 20, "Output", "-" * 20)
|
|
print(output_str)
|