* update bigdl_llm.py * update the installation of harness * fix partial function * import ipex * force seq len in decrease order * put func outside class * move comments * default 'trust_remote_code' as True * Update llm-harness-evaluation.yml
56 lines
2 KiB
Python
56 lines
2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
|
|
|
import inspect
|
|
from lm_eval.models.huggingface import AutoCausalLM
|
|
from lm_eval import utils
|
|
from functools import partial
|
|
|
|
|
|
# wrap and force the Reorderer to be in a decrease order
|
|
# This is a workaround to avoid frequent memory allocation which may cause OOM
|
|
def force_decrease_order(Reorderer):
|
|
def DecreaseReorderer(arr, fn):
|
|
def _collate(x):
|
|
len, tokens = fn(x)
|
|
len = - abs(len)
|
|
return len, tokens
|
|
return Reorderer(arr, _collate)
|
|
return DecreaseReorderer
|
|
utils.Reorderer = force_decrease_order(utils.Reorderer)
|
|
|
|
|
|
class BigDLLM(AutoCausalLM):
|
|
AUTO_MODEL_CLASS = AutoModelForCausalLM
|
|
AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
|
|
def __init__(self, *args, **kwargs):
|
|
if 'device' in kwargs and 'xpu' in kwargs['device']:
|
|
import intel_extension_for_pytorch
|
|
self.bigdl_llm_kwargs = {}
|
|
keys = list(kwargs.keys())
|
|
for k in keys:
|
|
if k not in self.AutoCausalLM_ARGS:
|
|
self.bigdl_llm_kwargs[k] = kwargs[k]
|
|
kwargs.pop(k)
|
|
AutoModelForCausalLM.from_pretrained = partial(AutoModelForCausalLM.from_pretrained, **self.bigdl_llm_kwargs)
|
|
kwargs['trust_remote_code'] = kwargs.get('trust_remote_code', True)
|
|
super().__init__(*args, **kwargs)
|
|
|
|
@property
|
|
def add_special_tokens(self) -> bool:
|
|
return False
|