* add ppl benchmark * add license * add readme * add dataset argument * add dataset usage * fixed low bit args * correct result * fix terminal display * fix ppl update * enable fp16 fp32 bf16 * format the desc * fix model_kwargs * add more readme
84 lines
3.2 KiB
Python
84 lines
3.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import intel_extension_for_pytorch as ipex
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
from transformers import AutoTokenizer
|
|
|
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
|
|
|
class PPL:
|
|
def __init__(self):
|
|
self.nll = 0
|
|
self.cnt = 0
|
|
def __call__(self, all_logits, labels):
|
|
'''
|
|
all_logits [seq_length, vocab_size]
|
|
labels [seq_length]
|
|
'''
|
|
seq_length = all_logits.shape[0]
|
|
for i in range(0, seq_length - 1):
|
|
logits = all_logits[i, :]
|
|
max_logit = np.amax(logits)
|
|
sum_exp = np.sum(np.exp(logits - max_logit))
|
|
# logits at time-step i is for predicting token at time-step (i+1)
|
|
next_tok = labels[i + 1]
|
|
log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
|
|
self.nll += -log_softmax_of_tok
|
|
self.cnt += 1
|
|
return np.exp(self.nll / self.cnt)
|
|
|
|
def result(self):
|
|
return np.exp(self.nll / self.cnt)
|
|
|
|
def __str__(self):
|
|
return f"PPL: {np.exp(self.nll / self.cnt):.3f}"
|
|
|
|
|
|
class BigDLPPL:
|
|
def __init__(self, model_path, device, **model_kwargs) -> None:
|
|
model_kwargs['trust_remote_code'] = model_kwargs.get('trust_remote_code', True)
|
|
model_kwargs['optimize_model'] = model_kwargs.get('optimize_model', True)
|
|
self.device = device
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
|
if 'xpu' in device:
|
|
import intel_extension_for_pytorch as ipex
|
|
self.model.to(device)
|
|
self.ppl_evaluator = PPL()
|
|
|
|
def perplexity_hf(self, text):
|
|
inputs = self.tokenizer('\n\n'.join(text), return_tensors='pt').to(self.device)
|
|
input_ids = inputs['input_ids']
|
|
# attention_mask = inputs['attention_mask']
|
|
progress_bar = tqdm(range(0, input_ids.shape[1], 512))
|
|
|
|
for i0 in progress_bar:
|
|
input_ids_chunks = input_ids[:, i0:(i0+512)]
|
|
input_ids_chunks[:, 0] = 1
|
|
with torch.no_grad():
|
|
result = self.model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
|
|
#print(f"ppl = {torch.exp(result.loss)}")
|
|
seq_len = result.logits.shape[1]
|
|
data = result.logits
|
|
data = data.to('cpu')
|
|
input_ids_chunks = input_ids_chunks.to('cpu')
|
|
self.ppl_evaluator(data.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
|
|
progress_bar.set_description(f"{self.ppl_evaluator}")
|
|
|
|
return self.ppl_evaluator.result()
|