ipex-llm/docs/readthedocs/source/index.rst
2023-08-21 22:34:44 +08:00

93 lines
5.8 KiB
ReStructuredText

.. meta::
:google-site-verification: S66K6GAclKw1RroxU0Rka_2d1LZFVe27M0gRneEsIVI
BigDL: fast, distributed, secure AI for Big Data
=================================================
Latest News
---------------------------------
- **Try the latest** `bigdl-llm <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_ **library for running LLM (large language model) on your Intel laptop using INT4 with very low latency!** [*]_. *(It is built on top of the excellent work of* `llama.cpp <https://github.com/ggerganov/llama.cpp>`_, `gptq <https://github.com/IST-DASLab/gptq>`_, `bitsandbytes <https://github.com/TimDettmers/bitsandbytes>`_, *etc., and supports any Hugging Face Transformers model.)*
- **[Update] Over a dozen models have been verified on** `bigdl-llm <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
------
Overview
---------------------------------
`BigDL <https://github.com/intel-analytics/bigdl>`_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
- `LLM <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
- `Orca <doc/Orca/index.html>`_: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
- `Nano <doc/Nano/index.html>`_: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
- `DLlib <doc/DLlib/index.html>`_: "Equivalent of Spark MLlib" for Deep Learning
- `Chronos <doc/Chronos/index.html>`_: Scalable Time Series Analysis using AutoML
- `Friesian <doc/Friesian/index.html>`_: End-to-End Recommendation Systems
- `PPML <doc/PPML/index.html>`_: Secure Big Data and AI (with SGX Hardware Security)
------
Choosing the right BigDL library
---------------------------------
.. graphviz::
digraph BigDLDecisionTree {
graph [pad=0.1 ranksep=0.3 tooltip=" "]
node [color="#0171c3" shape=box fontname="Arial" fontsize=14 tooltip=" "]
edge [tooltip=" "]
Feature1 [label="Hardware Secured Big Data & AI?"]
Feature2 [label="Python vs. Scala/Java?"]
Feature3 [label="What type of application?"]
Feature4 [label="Domain?"]
LLM[href="https://github.com/intel-analytics/BigDL/blob/main/python/llm" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-LLM document"]
Orca[href="../doc/Orca/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Orca document"]
Nano[href="../doc/Nano/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Nano document"]
DLlib1[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
DLlib2[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
Chronos[href="../doc/Chronos/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Chronos document"]
Friesian[href="../doc/Friesian/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Friesian document"]
PPML[href="../doc/PPML/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-PPML document"]
ArrowLabel1[label="No" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel2[label="Yes" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel3[label="Python" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel4[label="Scala/Java" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel5[label="Large Language Model" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel6[label="Big Data + \n AI (TF/PyTorch)" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel7[label="Accelerate \n TensorFlow / PyTorch" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel8[label="DL for Spark MLlib" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel9[label="High Level App Framework" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel10[label="Time Series" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
ArrowLabel11[label="Recommender System" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
Feature1 -> ArrowLabel1[dir=none]
ArrowLabel1 -> Feature2
Feature1 -> ArrowLabel2[dir=none]
ArrowLabel2 -> PPML
Feature2 -> ArrowLabel3[dir=none]
ArrowLabel3 -> Feature3
Feature2 -> ArrowLabel4[dir=none]
ArrowLabel4 -> DLlib1
Feature3 -> ArrowLabel5[dir=none]
ArrowLabel5 -> LLM
Feature3 -> ArrowLabel6[dir=none]
ArrowLabel6 -> Orca
Feature3 -> ArrowLabel7[dir=none]
ArrowLabel7 -> Nano
Feature3 -> ArrowLabel8[dir=none]
ArrowLabel8 -> DLlib2
Feature3 -> ArrowLabel9[dir=none]
ArrowLabel9 -> Feature4
Feature4 -> ArrowLabel10[dir=none]
ArrowLabel10 -> Chronos
Feature4 -> ArrowLabel11[dir=none]
ArrowLabel11 -> Friesian
}
------
.. [*] Performance varies by use, configuration and other factors. `bigdl-llm` may not optimize to the same degree for non-Intel products. Learn more at www.Intel.com/PerformanceIndex.