* Remove model with optimize_model=False in NPU verified models tables, and remove related example * Remove experimental in run optimized model section title * Unify model table order & example cmd * Move embedding example to separate folder & update quickstart example link * Add Quickstart reference in main NPU readme * Small fix * Small fix * Move save/load examples under NPU/HF-Transformers-AutoModels * Add low-bit and polish arguments for LLM Python examples * Small fix * Add low-bit and polish arguments for Multi-Model examples * Polish argument for Embedding models * Polish argument for LLM CPP examples * Add low-bit and polish argument for Save-Load examples * Add accuracy tuning tips for examples * Update NPU qucikstart accuracy tuning with low-bit optimizations * Add save/load section to qucikstart * Update CPP example sample output to EN * Add installation regarding cmake for CPP examples * Small fix * Small fix * Small fix * Small fix * Small fix * Small fix * Unify max prompt length to 512 * Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4 * Update based on comments * Small fix
106 lines
3.7 KiB
Python
106 lines
3.7 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import torch
|
|
import time
|
|
import argparse
|
|
|
|
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
from transformers.utils import logging
|
|
|
|
import requests
|
|
from PIL import Image
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Predict Tokens using `chat()` API for npu model"
|
|
)
|
|
parser.add_argument(
|
|
"--repo-id-or-model-path",
|
|
type=str,
|
|
default="openbmb/MiniCPM-Llama3-V-2_5",
|
|
help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
|
|
", or the path to the huggingface checkpoint folder.",
|
|
)
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="What is in this image?",
|
|
help='Prompt to infer')
|
|
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict.")
|
|
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
|
help='Low bit optimizations that will be applied to the model.')
|
|
parser.add_argument("--save-directory", type=str,
|
|
required=True,
|
|
help="The path of folder to save converted model, "
|
|
"If path not exists, lowbit model will be saved there. "
|
|
"Else, lowbit model will be loaded.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
torch_dtype=torch.float16,
|
|
trust_remote_code=True,
|
|
attn_implementation="eager",
|
|
load_in_low_bit=args.low_bit,
|
|
optimize_model=True,
|
|
max_context_len=args.max_context_len,
|
|
max_prompt_len=args.max_prompt_len,
|
|
save_directory=args.save_directory
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
print("-" * 80)
|
|
print("done")
|
|
|
|
msgs = [{'role': 'user', 'content': args.prompt}]
|
|
image_path = args.image_url_or_path
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path).convert('RGB')
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
|
st = time.time()
|
|
res = model.chat(
|
|
image=image,
|
|
msgs=msgs,
|
|
tokenizer=tokenizer,
|
|
sampling=True,
|
|
temperature=0.7,
|
|
# system_prompt='' # pass system_prompt if needed
|
|
)
|
|
end = time.time()
|
|
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(args.prompt)
|
|
output_str = res
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|
|
|
|
print("done")
|
|
print("success shut down")
|