ipex-llm/python/llm/example/CPU/LangChain/low_bit.py
Jin, Qiao c2efa264d9
Update LangChain examples to use upstream (#12388)
* Update LangChain examples to use upstream

* Update README and fix links

* Update LangChain CPU examples to use upstream

* Update LangChain CPU voice_assistant example

* Update CPU README

* Update GPU README

* Remove GPU Langchain vLLM example and fix comments

* Change langchain -> LangChain

* Add reference for both upstream llms and embeddings

* Fix comments

* Fix comments

* Fix comments

* Fix comments

* Fix comment
2024-11-26 16:43:15 +08:00

73 lines
No EOL
2.3 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import warnings
from langchain.chains import LLMChain
from langchain_community.llms import IpexLLM
from langchain_core.prompts import PromptTemplate
warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*")
def main(args):
question = args.question
model_path = args.model_path
low_bit_model_path = args.target_path
template ="""{question}"""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = IpexLLM.from_model_id(
model_id=model_path,
model_kwargs={
"temperature": 0,
"max_length": 64,
"trust_remote_code": True,
},
)
llm.model.save_low_bit(low_bit_model_path)
del llm
llm_lowbit = IpexLLM.from_model_id_low_bit(
model_id=low_bit_model_path,
tokenizer_id=model_path,
# tokenizer_name=saved_lowbit_model_path, # copy the tokenizers to saved path if you want to use it this way
model_kwargs={
"temperature": 0,
"max_length": 64,
"trust_remote_code": True,
},
)
llm_chain = prompt | llm_lowbit
output = llm_chain.invoke(question)
print("====output=====")
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TransformersLLM Langchain Chat Example')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to transformers model')
parser.add_argument('-t','--target-path',type=str,required=True,
help='the path to save the low bit model')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
args = parser.parse_args()
main(args)