ipex-llm/docs/readthedocs/source/doc/Chronos/Overview/quick-tour.rst
2022-10-14 09:58:38 +08:00

301 lines
9 KiB
ReStructuredText

Chronos Quick Tour
======================
Welcome to Chronos for building a fast, accurate and scalable time series analysis application🎉! Start with our quick tour to understand some critical concepts and how to use them to tackle your tasks.
.. grid:: 1 1 1 1
.. grid-item-card::
:text-align: center
:shadow: none
:class-header: sd-bg-light
:class-footer: sd-bg-light
:class-card: sd-mb-2
**Data processing**
^^^
Time series data processing includes imputing, deduplicating, resampling, scale/unscale, roll sampling, etc to process raw time series data(typically in a table) to a format that is understandable to the models. ``TSDataset`` and ``XShardsTSDataset`` are provided for an abstraction.
+++
.. button-ref:: TSDataset/XShardsTSDataset
:color: primary
:expand:
:outline:
Get Started
.. grid:: 1 1 3 3
.. grid-item-card::
:text-align: center
:shadow: none
:class-header: sd-bg-light
:class-footer: sd-bg-light
:class-card: sd-mb-2
**Forecasting**
^^^
Time series forecasting uses history data to predict future data. ``Forecaster`` and ``AutoTSEstimator`` are provided for built-in algorithms and distributed hyperparameter tunning.
+++
.. button-ref:: Forecaster
:color: primary
:expand:
:outline:
Get Started
.. grid-item-card::
:text-align: center
:shadow: none
:class-header: sd-bg-light
:class-footer: sd-bg-light
:class-card: sd-mb-2
**Anomaly Detection**
^^^
Time series anomaly detection finds the anomaly point in time series. ``Detector`` is provided for many built-in algorithms.
+++
.. button-ref:: Detector
:color: primary
:expand:
:outline:
Get Started
.. grid-item-card::
:text-align: center
:shadow: none
:class-header: sd-bg-light
:class-footer: sd-bg-light
:class-card: sd-mb-2
**Simulation**
^^^
Time series simulation generates synthetic time series data. ``Simulator`` is provided for many built-in algorithms.
+++
.. button-ref:: Simulator(experimental)
:color: primary
:expand:
:outline:
Get Started
TSDataset/XShardsTSDataset
---------------------
In Chronos, we provide a ``TSDataset`` (and a ``XShardsTSDataset`` to handle large data input in distributed fashion) abstraction to represent a time series dataset. It is responsible for preprocessing raw time series data(typically in a table) to a format that is understandable to the models. Many typical transformation, preprocessing and feature engineering method can be called cascadely on ``TSDataset`` or ``XShardsTSDataset``.
.. code-block:: python
# !wget https://raw.githubusercontent.com/numenta/NAB/v1.0/data/realKnownCause/nyc_taxi.csv
import pandas as pd
from sklearn.preprocessing import StandardScaler
from bigdl.chronos.data import TSDataset
df = pd.read_csv("nyc_taxi.csv", parse_dates=["timestamp"])
tsdata = TSDataset.from_pandas(df,
dt_col="timestamp",
target_col="value")
scaler = StandardScaler()
tsdata.deduplicate()\
.impute()\
.gen_dt_feature()\
.scale(scaler)\
.roll(lookback=100, horizon=1)
.. grid:: 2
:gutter: 1
.. grid-item-card::
.. button-ref:: ./data_processing_feature_engineering
:color: primary
:expand:
:outline:
Tutorial
.. grid-item-card::
.. button-ref:: ../../PythonAPI/Chronos/tsdataset
:color: primary
:expand:
:outline:
API Document
Forecaster
-----------------------
We have implemented quite a few algorithms among traditional statistics to deep learning for time series forecasting in ``bigdl.chronos.forecaster`` package. Users may train these forecasters on history time series and use them to predict future time series.
To import a specific forecaster, you may use {algorithm name} + "Forecaster", and call ``fit`` to train the forecaster and ``predict`` to predict future data.
.. code-block:: python
from bigdl.chronos.forecaster import TCNForecaster # TCN is algorithm name
from bigdl.chronos.data import get_public_dataset
if __name__ == "__main__":
# use nyc_taxi public dataset
train_data, _, test_data = get_public_dataset("nyc_taxi")
for data in [train_data, test_data]:
# use 100 data point in history to predict 1 data point in future
data.roll(lookback=100, horizon=1)
# create a forecaster
forecaster = TCNForecaster.from_tsdataset(train_data)
# train the forecaster
forecaster.fit(train_data)
# predict with the trained forecaster
pred = forecaster.predict(test_data)
AutoTSEstimator
---------------------------
For time series forecasting, we also provide an ``AutoTSEstimator`` for distributed hyperparameter tunning as an extention to ``Forecaster``. Users only need to create a ``AutoTSEstimator`` and call ``fit`` to train the estimator. A ``TSPipeline`` will be returned for users to predict future data.
.. code-block:: python
from bigdl.orca.automl import hp
from bigdl.chronos.data import get_public_dataset
from bigdl.chronos.autots import AutoTSEstimator
from bigdl.orca import init_orca_context, stop_orca_context
from sklearn.preprocessing import StandardScaler
if __name__ == "__main__":
# initial orca context
init_orca_context(cluster_mode="local", cores=4, memory="8g", init_ray_on_spark=True)
# load dataset
tsdata_train, tsdata_val, tsdata_test = get_public_dataset(name='nyc_taxi')
# dataset preprocessing
stand = StandardScaler()
for tsdata in [tsdata_train, tsdata_val, tsdata_test]:
tsdata.gen_dt_feature().impute()\
.scale(stand, fit=tsdata is tsdata_train)
# AutoTSEstimator initalization
autotsest = AutoTSEstimator(model="tcn",
future_seq_len=10)
# AutoTSEstimator fitting
tsppl = autotsest.fit(data=tsdata_train,
validation_data=tsdata_val)
# Prediction
pred = tsppl.predict(tsdata_test)
# stop orca context
stop_orca_context()
.. grid:: 3
:gutter: 1
.. grid-item-card::
.. button-ref:: ../QuickStart/chronos-tsdataset-forecaster-quickstart
:color: primary
:expand:
:outline:
Quick Start
.. grid-item-card::
.. button-ref:: ./forecasting
:color: primary
:expand:
:outline:
Tutorial
.. grid-item-card::
.. button-ref:: ../../PythonAPI/Chronos/forecasters
:color: primary
:expand:
:outline:
API Document
Detector
--------------------
We have implemented quite a few algorithms among traditional statistics to deep learning for time series anomaly detection in ``bigdl.chronos.detector.anomaly`` package.
To import a specific detector, you may use {algorithm name} + "Detector", and call ``fit`` to train the detector and ``anomaly_indexes`` to get anomaly data points' indexs.
.. code-block:: python
from bigdl.chronos.detector.anomaly import DBScanDetector # DBScan is algorithm name
from bigdl.chronos.data import get_public_dataset
if __name__ == "__main__":
# use nyc_taxi public dataset
train_data = get_public_dataset("nyc_taxi", with_split=False)
# create a detector
detector = DBScanDetector()
# fit a detector
detector.fit(train_data.to_pandas()['value'].to_numpy())
# find the anomaly points
anomaly_indexes = detector.anomaly_indexes()
.. grid:: 3
:gutter: 1
.. grid-item-card::
.. button-ref:: ../QuickStart/chronos-anomaly-detector
:color: primary
:expand:
:outline:
Quick Start
.. grid-item-card::
.. button-ref:: ./anomaly_detection
:color: primary
:expand:
:outline:
Tutorial
.. grid-item-card::
.. button-ref:: ../../PythonAPI/Chronos/anomaly_detectors
:color: primary
:expand:
:outline:
API Document
Simulator(experimental)
---------------------
Simulator is still under activate development with unstable API.
.. grid:: 2
:gutter: 1
.. grid-item-card::
.. button-ref:: ./simulation
:color: primary
:expand:
:outline:
Tutorial
.. grid-item-card::
.. button-ref:: ../../PythonAPI/Chronos/simulator
:color: primary
:expand:
:outline:
API Document