ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/Embedding/bce-embedding.py
Yuwen Hu 381d448ee2
[NPU] Example & Quickstart updates (#12650)
* Remove model with optimize_model=False in NPU verified models tables, and remove related example

* Remove experimental in run optimized model section title

* Unify model table order & example cmd

* Move embedding example to separate folder & update quickstart example link

* Add Quickstart reference in main NPU readme

* Small fix

* Small fix

* Move save/load examples under NPU/HF-Transformers-AutoModels

* Add low-bit and polish arguments for LLM Python examples

* Small fix

* Add low-bit and polish arguments for Multi-Model  examples

* Polish argument for Embedding models

* Polish argument for LLM CPP examples

* Add low-bit and polish argument for Save-Load examples

* Add accuracy tuning tips for examples

* Update NPU qucikstart accuracy tuning with low-bit optimizations

* Add save/load section to qucikstart

* Update CPP example sample output to EN

* Add installation regarding cmake for CPP examples

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Unify max prompt length to 512

* Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4

* Update based on comments

* Small fix
2025-01-07 13:52:41 +08:00

72 lines
2.4 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import torch
import argparse
from ipex_llm.transformers.npu_model import EmbeddingModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="maidalun1020/bce-embedding-base_v1",
help="The huggingface repo id for the bce-embedding model to be downloaded"
", or the path to the huggingface checkpoint folder.",
)
parser.add_argument('--prompt', type=str, default="'sentence_0', 'sentence_1'",
help='Prompt to infer')
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, lowbit model will be loaded.",
)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model = EmbeddingModel(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
save_directory=args.save_directory
)
# list of sentences
split_items = args.prompt.split(',')
sentences = [item.strip().strip("'") for item in split_items]
# extract embeddings
st = time.time()
embeddings = model.encode(sentences)
end = time.time()
print(f'Inference time: {end-st} s')
print(embeddings)