* init fastapi-serving one card * mv api code to source * update worker * update for style-check * add worker * update bash * update * update worker name and add readme * rename update * rename to fastapi
78 lines
No EOL
3.3 KiB
Python
78 lines
No EOL
3.3 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch.distributed as dist
|
|
from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker
|
|
from ipex_llm.serving.fastapi import FastApp
|
|
from transformers.utils import logging
|
|
from transformers import AutoTokenizer
|
|
import uvicorn
|
|
import asyncio
|
|
from typing import Dict
|
|
import argparse
|
|
logger = logging.get_logger(__name__)
|
|
|
|
init_pipeline_parallel()
|
|
my_rank = dist.get_rank()
|
|
my_size = dist.get_world_size()
|
|
device = f"xpu:{my_rank}"
|
|
logger.info(f"rank: {my_rank}, size: {my_size}")
|
|
result_dict: Dict[str, str] = {}
|
|
local_rank = my_rank
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
|
help='The quantization type the model will convert to.')
|
|
parser.add_argument('--port', type=int, default=8000,
|
|
help='The port number on which the server will run.')
|
|
parser.add_argument('--max-num-seqs', type=int, default=8,
|
|
help='Max num sequences in a batch.')
|
|
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
|
|
help='Max num sequences in a batch during prefilling.')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
low_bit = args.low_bit
|
|
max_num_seqs = args.max_num_seqs
|
|
max_prefilled_seqs = args.max_prefilled_seqs
|
|
|
|
# serialize model initialization so that we do not run out of CPU memory
|
|
for i in range(my_size):
|
|
if my_rank == i:
|
|
logger.info("start model initialization")
|
|
local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
|
|
logger.info("model initialized")
|
|
dist.barrier()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
myapp = FastApp(local_model, tokenizer)
|
|
if local_rank == 0:
|
|
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
|
|
server = uvicorn.Server(config)
|
|
await server.serve()
|
|
else:
|
|
while True:
|
|
await asyncio.sleep(0)
|
|
await local_model.process_step(tokenizer, result_dict)
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |