ipex-llm/python/llm/dev/benchmark/harness/bigdl_llm.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

59 lines
2.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ipex_llm.transformers import AutoModelForCausalLM
import inspect
from lm_eval.models.huggingface import AutoCausalLM
from lm_eval import utils
from functools import partial
# wrap and force the Reorderer to be in a decrease order
# This is a workaround to avoid frequent memory allocation which may cause OOM
def force_decrease_order(Reorderer):
def DecreaseReorderer(arr, fn):
def _collate(x):
len, tokens = fn(x)
len = - abs(len)
return len, tokens
return Reorderer(arr, _collate)
return DecreaseReorderer
utils.Reorderer = force_decrease_order(utils.Reorderer)
class BigDLLM(AutoCausalLM):
AUTO_MODEL_CLASS = AutoModelForCausalLM
AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
def __init__(self, *args, **kwargs):
if 'device' in kwargs and 'xpu' in kwargs['device']:
import intel_extension_for_pytorch
self.bigdl_llm_kwargs = {}
keys = list(kwargs.keys())
for k in keys:
if k not in self.AutoCausalLM_ARGS:
self.bigdl_llm_kwargs[k] = kwargs.pop(k)
self.bigdl_llm_kwargs['use_cache'] = self.bigdl_llm_kwargs.get('use_cache', True)
self.bigdl_llm_kwargs['optimize_model'] = self.bigdl_llm_kwargs.get('optimize_model', True)
AutoModelForCausalLM.from_pretrained = partial(AutoModelForCausalLM.from_pretrained, **self.bigdl_llm_kwargs)
kwargs['trust_remote_code'] = kwargs.get('trust_remote_code', True)
super().__init__(*args, **kwargs)
@property
def add_special_tokens(self) -> bool:
return False