* Add cpu int4 example for BlueLM * addexample optimize_model cpu for bluelm * add example gpu int4 blueLM * add example optimiza_model GPU for bluelm * Fixing naming issues and BigDL package version. * Fixing naming issues... * Add BlueLM in README.md "Verified Models" |
||
|---|---|---|
| .. | ||
| Applications | ||
| Deepspeed-AutoTP | ||
| GGUF-Models/llama2 | ||
| HF-Transformers-AutoModels | ||
| LangChain | ||
| Native-Models | ||
| PyTorch-Models | ||
| QLoRA-FineTuning | ||
| vLLM-Serving | ||
| README.md | ||
BigDL-LLM Examples on Intel CPU
This folder contains examples of running BigDL-LLM on Intel CPU:
- HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
- QLoRA-FineTuning: running QLoRA finetuning using BigDL-LLM on intel CPUs
- vLLM-Serving: running vLLM serving framework on intel CPUs (with BigDL-LLM low-bit optimized models)
- Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models)
- LangChain: running LangChain applications on BigDL-LLM
- Applications: running LLM applications (such as agent, streaming-llm) on BigDl-LLM
- PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")
- Native-Models: converting & running LLM in
llama/chatglm/bloom/gptneox/starcodermodel family using native (cpp) implementation
System Support
Hardware:
- Intel® Core™ processors
- Intel® Xeon® processors
Operating System:
- Ubuntu 20.04 or later
- CentOS 7 or later
- Windows 10/11, with or without WSL