Add multi-stage Pipeline-Parallel-FastAPI example --------- Co-authored-by: hzjane <a1015616934@qq.com>
148 lines
No EOL
5 KiB
Python
148 lines
No EOL
5 KiB
Python
from pipeline_models import ModelRunner
|
|
import torch.nn.parallel
|
|
import torch.distributed as dist
|
|
import os
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
import oneccl_bindings_for_pytorch
|
|
|
|
from transformers.utils import logging
|
|
logger = logging.get_logger(__name__)
|
|
|
|
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
|
os.environ['MASTER_PORT'] = '29501'
|
|
|
|
backend = 'ccl'
|
|
dist.init_process_group(backend)
|
|
my_rank = dist.get_rank()
|
|
my_size = dist.get_world_size()
|
|
device = f"xpu:{my_rank}"
|
|
logger.info(f"rank: {my_rank}, size: {my_size}")
|
|
|
|
import time
|
|
from transformers import AutoTokenizer, AutoConfig, LlamaTokenizer
|
|
from fastapi import FastAPI, HTTPException
|
|
from pydantic import BaseModel
|
|
import uvicorn
|
|
import asyncio, uuid
|
|
from typing import Dict, List, Optional
|
|
import argparse
|
|
|
|
def get_int_from_env(env_keys, default):
|
|
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
|
for e in env_keys:
|
|
val = int(os.environ.get(e, -1))
|
|
if val >= 0:
|
|
return val
|
|
return int(default)
|
|
|
|
|
|
class PromptRequest(BaseModel):
|
|
prompt: str
|
|
n_predict: int = 32
|
|
|
|
|
|
empty_req = PromptRequest(prompt="", n_predict=0)
|
|
|
|
app = FastAPI()
|
|
global tokenizer
|
|
global local_model
|
|
|
|
request_queue: asyncio.Queue = asyncio.Queue()
|
|
result_dict: Dict[str, str] = {}
|
|
local_rank = my_rank
|
|
max_num_seqs = get_int_from_env(["MAX_NUM_SEQS"], "16")
|
|
|
|
|
|
@app.post("/generate/")
|
|
async def generate(prompt_request: PromptRequest):
|
|
request_id = str(uuid.uuid4())
|
|
await local_model.waiting_requests.put((request_id, prompt_request))
|
|
while True:
|
|
if request_id in result_dict:
|
|
with local_model.dict_lock:
|
|
output_str = result_dict[request_id]
|
|
if len(output_str) == 0:
|
|
logger.info(f"Why? {request_id}")
|
|
# await asyncio.sleep(0.1)
|
|
# continue
|
|
result_dict.pop(request_id)
|
|
return {"generated_text": output_str}
|
|
await asyncio.sleep(0)
|
|
|
|
|
|
def generate_text(prompt: List[str], n_predict = 32):
|
|
while prompt[-1] == "":
|
|
prompt = prompt[:-1]
|
|
if isinstance(n_predict, list):
|
|
n_predict = max(n_predict)
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
|
input_ids = inputs.input_ids.to(f'xpu:{local_rank}')
|
|
print(inputs)
|
|
attention_mask = inputs.attention_mask.to(f'xpu:{local_rank}')
|
|
output = local_model.generate(input_ids,
|
|
max_tokens=n_predict,
|
|
# attention_mask=attention_mask,
|
|
# max_new_tokens=n_predict,
|
|
# min_new_tokens=n_predict,
|
|
# do_sample=False,
|
|
# use_cache=True
|
|
)
|
|
torch.xpu.synchronize()
|
|
|
|
return output
|
|
|
|
|
|
async def process_requests(local_model, result_dict):
|
|
while True:
|
|
await asyncio.sleep(0)
|
|
await local_model.process_step(tokenizer, result_dict)
|
|
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event():
|
|
asyncio.create_task(process_requests(local_model, result_dict))
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
|
help='The quantization type the model will convert to.')
|
|
parser.add_argument('--port', type=int, default=8000,
|
|
help='The port number on which the server will run.')
|
|
parser.add_argument('--max-num-seqs', type=int, default=8,
|
|
help='Max num sequences in a batch.')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
low_bit = args.low_bit
|
|
max_num_seqs = args.max_num_seqs
|
|
|
|
# serialize model initialization so that we do not run out of CPU memory
|
|
for i in range(my_size):
|
|
if my_rank == i:
|
|
logger.info("start model initialization")
|
|
global local_model
|
|
local_model = ModelRunner(model_path, my_rank, my_size, low_bit, max_num_seqs)
|
|
logger.info("model initialized")
|
|
dist.barrier()
|
|
# Load tokenizer
|
|
global tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
if local_rank == 0:
|
|
config = uvicorn.Config(app=app, host="0.0.0.0", port=args.port)
|
|
server = uvicorn.Server(config)
|
|
await server.serve()
|
|
else:
|
|
while True:
|
|
await asyncio.sleep(0)
|
|
await local_model.process_step(tokenizer, result_dict)
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |