92 lines
3.4 KiB
Python
92 lines
3.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This file is adapted from
|
|
# https://huggingface.co/docs/transformers/en/perplexity
|
|
#
|
|
|
|
import argparse
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_path", required=True, type=str)
|
|
parser.add_argument("--data_path", type=str, default='wikitext-2-raw-v1/wikitext-2-raw/wiki.test.raw')
|
|
parser.add_argument("--chunk_size", type=int, default=512)
|
|
parser.add_argument("--stride", type=int, default=0)
|
|
parser.add_argument("--device", type=str, default="xpu")
|
|
parser.add_argument("--precision", type=str, default="sym_int4")
|
|
parser.add_argument("--use-cache", action="store_true")
|
|
args = parser.parse_args()
|
|
|
|
if args.precision == "fp16": # ipex fp16
|
|
from transformers import AutoModelForCausalLM
|
|
if "xpu" in args.device:
|
|
import intel_extension_for_pytorch as ipex
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path, use_cache=args.use_cache, trust_remote_code=True)
|
|
model = model.half()
|
|
else: # ipex-llm
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path, load_in_low_bit=args.precision,
|
|
use_cache=args.use_cache, trust_remote_code=True)
|
|
model = model.half()
|
|
model = model.to(args.device)
|
|
|
|
with open(args.data_path, "rb") as f:
|
|
data = f.read()
|
|
|
|
from transformers import AutoTokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
|
|
encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt")
|
|
|
|
max_length = model.config.max_position_embeddings
|
|
stride = args.chunk_size if args.stride <= 0 else args.stride
|
|
seq_len = encodings.input_ids.size(1)
|
|
num_chunks = seq_len // stride
|
|
|
|
nlls = []
|
|
prev_end_loc = 0
|
|
for i in tqdm(range(num_chunks)):
|
|
begin_loc = i * stride
|
|
if args.stride > 0:
|
|
end_loc = min(begin_loc + max_length, seq_len)
|
|
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
|
else:
|
|
end_loc = begin_loc + stride
|
|
trg_len = -stride//2
|
|
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device)
|
|
if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id
|
|
target_ids = input_ids.clone()
|
|
target_ids[:, :-trg_len] = -100
|
|
|
|
with torch.no_grad():
|
|
outputs = model(input_ids, labels=target_ids)
|
|
|
|
# loss is calculated using CrossEntropyLoss which averages over valid labels
|
|
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
|
|
# to the left by 1.
|
|
neg_log_likelihood = outputs.loss
|
|
|
|
nlls.append(neg_log_likelihood)
|
|
if "xpu" in args.device:
|
|
torch.xpu.empty_cache()
|
|
|
|
prev_end_loc = end_loc
|
|
if end_loc == seq_len:
|
|
break
|
|
|
|
ppl = torch.exp(torch.stack(nlls).mean())
|
|
print("Final ppl estimate: {}".format(ppl.item()))
|