ipex-llm/docker/llm/serving/cpu/docker
Xiangyu Tian b3f6faa038
LLM: Add CPU vLLM entrypoint (#11083)
Add CPU vLLM entrypoint and update CPU vLLM serving example.
2024-05-24 09:16:59 +08:00
..
benchmark_vllm_throughput.py LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
Dockerfile LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
model_adapter.py.patch Refactor bigdl.llm to ipex_llm (#24) 2024-03-22 15:41:21 +08:00
payload-1024.lua LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
README.md LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
start-fastchat-service.sh LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
start-vllm-service.sh LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
vllm_offline_inference.py LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00

Build/Use IPEX-LLM-serving cpu image

Build Image

docker build \
  --build-arg http_proxy=.. \
  --build-arg https_proxy=.. \
  --build-arg no_proxy=.. \
  --rm --no-cache -t intelanalytics/ipex-llm-serving-cpu:2.1.0-SNAPSHOT .

Use the image for doing cpu serving

You could use the following bash script to start the container. Please be noted that the CPU config is specified for Xeon CPUs, change it accordingly if you are not using a Xeon CPU.

#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-cpu:2.1.0-SNAPSHOT

sudo docker run -itd \
        --net=host \
        --cpuset-cpus="0-47" \
        --cpuset-mems="0" \
        --memory="32G" \
        --name=CONTAINER_NAME \
        --shm-size="16g" \
        $DOCKER_IMAGE

After the container is booted, you could get into the container through docker exec.

To run model-serving using IPEX-LLM as backend, you can refer to this document. Also you can set environment variables and start arguments while running a container to get serving started initially. You may need to boot several containers to support. One controller container and at least one worker container are needed. The api server address(host and port) and controller address are set in controller container, and you need to set the same controller address as above, model path on your machine and worker address in worker container.

To start a controller container:

#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-cpu:2.1.0-SNAPSHOT
controller_host=localhost
controller_port=23000
api_host=localhost
api_port=8000
sudo docker run -itd \
        --net=host \
	--privileged \
        --cpuset-cpus="0-47" \
        --cpuset-mems="0" \
        --memory="64G" \
        --name=serving-cpu-controller \
        --shm-size="16g" \
	-e ENABLE_PERF_OUTPUT="true" \
        -e CONTROLLER_HOST=$controller_host \
        -e CONTROLLER_PORT=$controller_port \
        -e API_HOST=$api_host \
        -e API_PORT=$api_port \
        $DOCKER_IMAGE -m controller

To start a worker container:

#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-cpu:2.1.0-SNAPSHOT
export MODEL_PATH=YOUR_MODEL_PATH
controller_host=localhost
controller_port=23000
worker_host=localhost
worker_port=23001
sudo docker run -itd \
        --net=host \
	--privileged \
        --cpuset-cpus="0-47" \
        --cpuset-mems="0" \
        --memory="64G" \
        --name="serving-cpu-worker" \
        --shm-size="16g" \
	-e ENABLE_PERF_OUTPUT="true" \
        -e CONTROLLER_HOST=$controller_host \
        -e CONTROLLER_PORT=$controller_port \
        -e WORKER_HOST=$worker_host \
        -e WORKER_PORT=$worker_port \
        -e OMP_NUM_THREADS=48 \
        -e MODEL_PATH=/llm/models/Llama-2-7b-chat-hf \
	-v $MODEL_PATH:/llm/models/ \
        $DOCKER_IMAGE -m worker -w vllm_worker # use -w model_worker if vllm worker is not needed

Then you can use curl for testing, an example could be:

curl -X POST -H "Content-Type: application/json" -d '{
    "model": "YOUR_MODEL_NAME",
    "prompt": "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
    "n": 1,
    "best_of": 1,
    "use_beam_search": false,
    "stream": false
}' http://localhost:8000/v1/completions

vLLM serving engine

To run vLLM engine using IPEX-LLM as backend, you can refer to this document.

We have included multiple example files in /llm/:

  1. vllm_offline_inference.py: Used for vLLM offline inference example
  2. benchmark_vllm_throughput.py: Used for benchmarking throughput
  3. payload-1024.lua: Used for testing request per second using 1k-128 request
  4. start-vllm-service.sh: Used for template for starting vLLM service
Online benchmark throurgh api_server

We can benchmark the api_server to get an estimation about TPS (transactions per second). To do so, you need to start the service first according to the instructions in this section.

In container, do the following:

  1. modify the /llm/payload-1024.lua so that the "model" attribute is correct. By default, we use a prompt that is roughly 1024 token long, you can change it if needed.
  2. Start the benchmark using wrk using the script below:
cd /llm
# You can change -t and -c to control the concurrency.
# By default, we use 12 connections to benchmark the service.
wrk -t4 -c4 -d15m -s payload-1024.lua http://localhost:8000/v1/completions --timeout 1h

Offline benchmark through benchmark_vllm_throughput.py

We have included the benchmark_throughput script provied by vllm in our image as /llm/benchmark_vllm_throughput.py. To use the benchmark_throughput script, you will need to download the test dataset through:

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

The full example looks like this:

cd /llm/

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

export MODEL="YOUR_MODEL"

# You can change load-in-low-bit from values in [sym_int4, fp8, fp16]

python3 /llm/benchmark_vllm_throughput.py \
    --backend vllm \
    --dataset /llm/ShareGPT_V3_unfiltered_cleaned_split.json \
    --model $MODEL \
    --num-prompts 1000 \
    --seed 42 \
    --trust-remote-code \
    --enforce-eager \
    --dtype bfloat16 \
    --device cpu \
    --load-in-low-bit sym_int4