119 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer, TextStreamer
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Predict Tokens using `generate()` API for npu model"
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--repo-id-or-model-path",
 | 
						|
        type=str,
 | 
						|
        default="Qwen/Qwen2.5-7B-Instruct",  # Or Qwen2-7B-Instruct, Qwen2-1.5B-Instruct
 | 
						|
        help="The huggingface repo id for the Qwen model to be downloaded"
 | 
						|
        ", or the path to the huggingface checkpoint folder",
 | 
						|
    )
 | 
						|
    parser.add_argument("--lowbit-path", type=str,
 | 
						|
        default="",
 | 
						|
        help="The path to the lowbit model folder, leave blank if you do not want to save. \
 | 
						|
            If path not exists, lowbit model will be saved there. \
 | 
						|
            Else, lowbit model will be loaded.",
 | 
						|
    )
 | 
						|
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
						|
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=960)
 | 
						|
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
						|
    parser.add_argument('--load_in_low_bit', type=str, default="sym_int4",
 | 
						|
                        help='Load in low bit to use')
 | 
						|
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
						|
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    if not args.lowbit_path or not os.path.exists(args.lowbit_path):
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                     optimize_model=True,
 | 
						|
                                                     pipeline=True,
 | 
						|
                                                     load_in_low_bit=args.load_in_low_bit,
 | 
						|
                                                     max_context_len=args.max_context_len,
 | 
						|
                                                     max_prompt_len=args.max_prompt_len,
 | 
						|
                                                     quantization_group_size=args.quantization_group_size,
 | 
						|
                                                     torch_dtype=torch.float16,
 | 
						|
                                                     attn_implementation="eager",
 | 
						|
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
						|
                                                     mixed_precision=True,
 | 
						|
                                                     trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(
 | 
						|
            args.lowbit_path,
 | 
						|
            attn_implementation="eager",
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            max_context_len=args.max_context_len,
 | 
						|
            max_prompt_len=args.max_prompt_len,
 | 
						|
            pipeline=True,
 | 
						|
            transpose_value_cache=not args.disable_transpose_value_cache)
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    if args.lowbit_path and not os.path.exists(args.lowbit_path):
 | 
						|
        model.save_low_bit(args.lowbit_path)
 | 
						|
 | 
						|
    if args.disable_streaming:
 | 
						|
        streamer = None
 | 
						|
    else:
 | 
						|
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
						|
 | 
						|
    print("-" * 80)
 | 
						|
    print("done")
 | 
						|
    messages = [{"role": "system", "content": "You are a helpful assistant."},
 | 
						|
                {"role": "user", "content": args.prompt}]
 | 
						|
    text = tokenizer.apply_chat_template(messages,
 | 
						|
                                         tokenize=False,
 | 
						|
                                         add_generation_prompt=True)
 | 
						|
    with torch.inference_mode():
 | 
						|
        print("finish to load")
 | 
						|
        for i in range(3):
 | 
						|
            _input_ids = tokenizer([text], return_tensors="pt").input_ids
 | 
						|
            print("-" * 20, "Input", "-" * 20)
 | 
						|
            print("input length:", len(_input_ids[0]))
 | 
						|
            print(text)
 | 
						|
            print("-" * 20, "Output", "-" * 20)
 | 
						|
            st = time.time()
 | 
						|
            output = model.generate(
 | 
						|
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
						|
            )
 | 
						|
            end = time.time()
 | 
						|
            if args.disable_streaming:
 | 
						|
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
                print(output_str)
 | 
						|
            print(f"Inference time: {end-st} s")
 | 
						|
 | 
						|
    print("-" * 80)
 | 
						|
    print("done")
 | 
						|
    print("success shut down")
 |