ipex-llm/python/llm/portable-zip/kv_cache.py
binbin Deng 8ef8e25178 LLM: improve response speed in multi-turn chat (#9299)
* update

* fix stop word and add chatglm2 support

* remove system prompt
2023-11-01 10:30:44 +08:00

158 lines
5.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/kv_cache.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
def slice1d(x, start, end):
return x[:, start:end, ...]
def slice2d(x, start, end):
return x[:, :, start:end, ...]
def slice3d(x, start, end):
return x[:, :, :, start:end, ...]
DIM_TO_SLICE = {
1: slice1d,
2: slice2d,
3: slice3d,
}
class StartRecentKVCache:
def __init__(
self,
start_size=4,
recent_size=512,
k_seq_dim=2,
v_seq_dim=2,
):
print(f"StartRecentKVCache: {start_size}, {recent_size}")
self.start_size = start_size
self.recent_size = recent_size
self.cache_size = start_size + recent_size
self.k_seq_dim = k_seq_dim
self.v_seq_dim = v_seq_dim
self.k_slice = DIM_TO_SLICE[k_seq_dim]
self.v_slice = DIM_TO_SLICE[v_seq_dim]
def __call__(self, past_key_values):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
if seq_len <= self.cache_size:
return past_key_values
return [
[
torch.cat(
[
self.k_slice(k, 0, self.start_size),
self.k_slice(k, seq_len - self.recent_size, seq_len),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, self.start_size),
self.v_slice(v, seq_len - self.recent_size, seq_len),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]
def evict_for_space(self, past_key_values, num_coming):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
if seq_len + num_coming <= self.cache_size:
return past_key_values
return [
[
torch.cat(
[
self.k_slice(k, 0, self.start_size),
self.k_slice(
k, seq_len - self.recent_size + num_coming, seq_len
),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, self.start_size),
self.v_slice(
v, seq_len - self.recent_size + num_coming, seq_len
),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]
def evict_range(self, past_key_values, start, end):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
assert start <= end and end <= seq_len
return [
[
torch.cat(
[
self.k_slice(k, 0, start),
self.k_slice(k, end, seq_len),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, start),
self.v_slice(v, end, seq_len),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]