76 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
 | 
						|
 | 
						|
init_pipeline_parallel()
 | 
						|
torch.manual_seed(1234)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
   parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for large vision language model')
 | 
						|
   parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
 | 
						|
                       help='The huggingface repo id for the Qwen-VL-Chat model to be downloaded'
 | 
						|
                            ', or the path to the huggingface checkpoint folder')
 | 
						|
   parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                       default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
 | 
						|
                       help='The URL or path to the image to infer')
 | 
						|
   parser.add_argument('--prompt', type=str, default="这是什么?",
 | 
						|
                       help='Prompt to infer')
 | 
						|
   parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                       help='Max tokens to predict')
 | 
						|
   parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.')
 | 
						|
   parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
 | 
						|
 | 
						|
   args = parser.parse_args()
 | 
						|
   model_path = args.repo_id_or_model_path
 | 
						|
   image_path = args.image_url_or_path
 | 
						|
 | 
						|
   # Load model
 | 
						|
   # For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
						|
   # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
   # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
   model = AutoModelForCausalLM.from_pretrained(model_path, 
 | 
						|
                                                load_in_low_bit=args.low_bit,
 | 
						|
                                                optimize_model=True,
 | 
						|
                                                trust_remote_code=True,
 | 
						|
                                                use_cache=True,
 | 
						|
                                                torch_dtype=torch.float32,
 | 
						|
                                                modules_to_not_convert=['c_fc', 'out_proj'],
 | 
						|
                                                pipeline_parallel_stages=args.gpu_num)
 | 
						|
 | 
						|
   # Load tokenizer
 | 
						|
   tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
   local_rank = torch.distributed.get_rank()
 | 
						|
 | 
						|
   all_input = [{'image': args.image_url_or_path}, {'text': args.prompt}]
 | 
						|
   input_list = [_input for _input in all_input if list(_input.values())[0] != '']
 | 
						|
   query = tokenizer.from_list_format(input_list)
 | 
						|
 | 
						|
   with torch.inference_mode():
 | 
						|
      response, _ = model.chat(tokenizer, query=query, history=[])
 | 
						|
      torch.xpu.synchronize()
 | 
						|
 | 
						|
      if local_rank == args.gpu_num - 1:
 | 
						|
         print('-'*20, 'Input', '-'*20)
 | 
						|
         print(f'Message: {all_input}')
 | 
						|
         print('-'*20, 'Output', '-'*20)
 | 
						|
         print(response)
 |