ipex-llm/python/llm/src/ipex_llm/transformers/awq/linear.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

314 lines
14 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/casper-hansen/AutoAWQ/blob/main/awq/modules/linear.py
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import torch
import torch.nn as nn
from ipex_llm.utils.common import invalidOperationError, invalidInputError
from transformers import AwqConfig
from transformers.utils.quantization_config import AwqBackendPackingMethod
def make_divisible(c, divisor):
return (c + divisor - 1) // divisor
def calculate_zeros_width(in_features, group_size=128, pack_num=8):
if group_size >= 128:
size_multiplier = 1
elif group_size == 64:
size_multiplier = 2
elif group_size == 32:
size_multiplier = 4
else:
invalidOperationError(False,
f"Not implemented group size {group_size}.")
base_width = make_divisible(in_features // group_size, pack_num)
base_width = make_divisible(base_width, size_multiplier) * size_multiplier
return base_width
class WQLinear_GEMM(nn.Module):
def __init__(self, bits, group_size, in_features, out_features, bias, dev, backend):
super().__init__()
invalidOperationError(bits == 4, "Only 4-bit are supported for now.")
self.in_features = in_features
self.out_features = out_features
self.bits = bits
self.group_size = group_size if group_size != -1 else in_features
self.backend = backend
# quick sanity check (make sure aligment)
invalidInputError(self.in_features % self.group_size == 0,
f"Invalid in_features number {self.in_features}.")
invalidInputError(out_features % (32 // self.bits) == 0,
f"Invalid out_features number {out_features}.")
if backend == AwqBackendPackingMethod.LLMAWQ:
self.wf = (torch.tensor([0, 1, 2, 3, 4, 5, 6, 7],
dtype=torch.int32) * self.bits).unsqueeze(0)
self.register_buffer('qweight',
torch.zeros((out_features,
in_features // (32 // self.bits)),
dtype=torch.int32, device=dev))
zeros_width = calculate_zeros_width(in_features, self.group_size)
self.register_buffer('qzeros',
torch.zeros((out_features, zeros_width),
dtype=torch.int32, device=dev))
self.register_buffer('scales',
torch.zeros((out_features, zeros_width * (32 // self.bits)),
dtype=torch.float16, device=dev))
elif backend == AwqBackendPackingMethod.AUTOAWQ:
self.wf = (torch.tensor([0, 4, 1, 5, 2, 6, 3, 7],
dtype=torch.int32) * self.bits).unsqueeze(0)
self.register_buffer('qweight',
torch.zeros((in_features,
out_features // (32 // self.bits)),
dtype=torch.int32, device=dev))
self.register_buffer('qzeros',
torch.zeros((in_features // self.group_size,
out_features // (32 // self.bits)),
dtype=torch.int32, device=dev))
self.register_buffer('scales',
torch.zeros((in_features // self.group_size, out_features),
dtype=torch.float16, device=dev))
if bias:
self.register_buffer('bias', torch.zeros((out_features), dtype=torch.float16,
device=dev))
else:
self.bias = None
@classmethod
def from_linear(cls, linear, bits, group_size, backend,
init_only=False, scales=None, zeros=None):
awq_linear = cls(bits, group_size, linear.in_features, linear.out_features,
linear.bias is not None, linear.weight.device, backend)
if init_only: # just prepare for loading sd
return awq_linear
# need scales and zeros info for real quantization
invalidInputError(scales is not None and zeros is not None,
"Scales and zeros should not be None.")
scale_zeros = zeros * scales
awq_linear.scales = scales.clone().half()
if linear.bias is not None:
awq_linear.bias = linear.bias.clone().half()
pack_num = 32 // awq_linear.bits
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(
torch.round((linear.weight.data[:, idx] +
scale_zeros[idx // group_size]) /
awq_linear.scales[idx // group_size]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.to(dtype=torch.int32)
qweight = torch.zeros((intweight.shape[0],
intweight.shape[1] // (32 // awq_linear.bits)),
dtype=torch.int32, device=intweight.device)
torch.set_printoptions(threshold=10_000)
print(intweight)
for col in range(intweight.shape[1] // pack_num):
if awq_linear.bits == 4:
if backend == AwqBackendPackingMethod.AUTOAWQ:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
elif backend == AwqBackendPackingMethod.LLMAWQ:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
invalidOperationError(False, "Only 4-bit are supported for now.")
for i in range(pack_num):
qweight_col = intweight[:, col * pack_num + order_map[i]]
qweight[:, col] |= qweight_col << (i * awq_linear.bits)
awq_linear.qweight = qweight
zeros = zeros.to(dtype=torch.int32)
qzeros = torch.zeros((zeros.shape[0], zeros.shape[1] // (32 // awq_linear.bits)),
dtype=torch.int32, device=zeros.device)
for col in range(zeros.shape[1] // pack_num):
if awq_linear.bits == 4:
if backend == AwqBackendPackingMethod.AUTOAWQ:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
elif backend == AwqBackendPackingMethod.LLMAWQ:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
invalidOperationError(False, "Only 4-bit are supported for now.")
for i in range(pack_num):
qzero_col = zeros[:, col * pack_num + order_map[i]]
qzeros[:, col] |= qzero_col << (i * awq_linear.bits)
awq_linear.qzeros = qzeros
return awq_linear
@torch.no_grad()
def forward(self, x):
invalidOperationError(False, "Bigdl-llm does not support inference awq models directly.")
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}, bits={}, group_size={}'.format(
self.in_features, self.out_features, self.bias is not None, self.bits, self.group_size
)
class WQLinear_GEMV(nn.Module):
def __init__(self, bits, group_size, in_features, out_features, bias, dev):
super().__init__()
invalidOperationError(bits == 4, "Only 4-bit are supported for now.")
self.in_features = in_features
self.out_features = out_features
self.bits = bits
self.group_size = group_size if group_size != -1 else in_features
self.split_k_iters = 8
# quick sanity check (make sure aligment)
invalidInputError(self.in_features % self.group_size == 0,
f"Invalid in_features number {self.in_features}.")
invalidInputError(out_features % (32 // self.bits) == 0,
f"Invalid out_features number {out_features}.")
pack_num = (32 // self.bits)
self.register_buffer('qweight',
torch.zeros((out_features, in_features // pack_num),
dtype=torch.int32, device=dev))
self.register_buffer('qzeros',
torch.zeros((out_features,
calculate_zeros_width(in_features,
self.group_size)),
dtype=torch.int32, device=dev))
self.register_buffer('scales',
torch.zeros((out_features,
calculate_zeros_width(in_features, self.group_size)
* pack_num), dtype=torch.float16, device=dev))
if bias:
self.register_buffer('bias', torch.zeros((out_features),
dtype=torch.float16, device=dev))
else:
self.bias = None
@classmethod
def from_linear(cls, linear, bits, group_size, backend,
init_only=False, scales=None, zeros=None):
awq_linear = cls(bits, group_size, linear.in_features, linear.out_features,
linear.bias is not None, linear.weight.device)
if init_only: # just prepare for loading sd
return awq_linear
# need scales and zeros info for real quantization
invalidInputError(scales is not None and zeros is not None,
"Scales and zeros should not be None.")
scale_zeros = zeros * scales
pack_num = 32 // awq_linear.bits
qscales = torch.zeros(
(scales.shape[0], calculate_zeros_width(linear.in_features, group_size) * pack_num),
dtype=torch.float16,
device=scales.device
)
qscales[:, :scales.shape[1]] = scales
awq_linear.scales = qscales
if linear.bias is not None:
awq_linear.bias = linear.bias.clone().half()
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(
torch.round((linear.weight.data[:, idx] +
scale_zeros[:, idx // group_size]) /
awq_linear.scales[:, idx // group_size]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.to(dtype=torch.int32)
qweight = torch.zeros((intweight.shape[0], intweight.shape[1] // 32 * awq_linear.bits),
dtype=torch.int32, device=intweight.device)
for col in range(intweight.shape[1] // pack_num):
if awq_linear.bits == 4:
if backend == AwqBackendPackingMethod.AUTOAWQ:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
elif backend == AwqBackendPackingMethod.LLMAWQ:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
invalidOperationError(False, "Only 4-bit are supported for now.")
for i in range(pack_num):
qweight_col = intweight[:, col * pack_num + order_map[i]]
qweight[:, col] |= qweight_col << (i * awq_linear.bits)
awq_linear.qweight = qweight
zeros = zeros.to(dtype=torch.int32)
qzeros = torch.zeros(
(zeros.shape[0], calculate_zeros_width(linear.in_features, group_size)),
dtype=torch.int32,
device=zeros.device,
)
for col in range((zeros.shape[1] + pack_num - 1) // pack_num):
if awq_linear.bits == 4:
if backend == AwqBackendPackingMethod.AUTOAWQ:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
elif backend == AwqBackendPackingMethod.LLMAWQ:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
invalidOperationError(False, "Only 4-bit are supported for now.")
for i in range(pack_num):
if col * pack_num + order_map[i] >= zeros.shape[1]:
continue
qzero_col = zeros[:, col * pack_num + order_map[i]]
qzeros[:, col] |= qzero_col << (i * awq_linear.bits)
awq_linear.qzeros = qzeros
return awq_linear
@torch.no_grad()
def forward(self, x):
invalidOperationError(False, "Bigdl-llm does not support inference awq models directly.")
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}, bits={}, group_size={}'.format(
self.in_features, self.out_features, self.bias is not None, self.bits, self.group_size
)