* [LLM] Support CPU Deepspeed distributed inference * Update run_deepspeed.py * Rename * fix style * add new codes * refine * remove annotated codes * refine * Update README.md * refine doc and example code
		
			
				
	
	
		
			125 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Some parts of this file is adapted from
 | 
						|
# https://github.com/TimDettmers/bitsandbytes/blob/0.39.1/bitsandbytes/nn/modules.py
 | 
						|
# which is licensed under the MIT license:
 | 
						|
#
 | 
						|
# MIT License
 | 
						|
#
 | 
						|
# Copyright (c) Facebook, Inc. and its affiliates.
 | 
						|
#
 | 
						|
# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
# of this software and associated documentation files (the "Software"), to deal
 | 
						|
# in the Software without restriction, including without limitation the rights
 | 
						|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
# copies of the Software, and to permit persons to whom the Software is
 | 
						|
# furnished to do so, subject to the following conditions:
 | 
						|
 | 
						|
# The above copyright notice and this permission notice shall be included in all
 | 
						|
# copies or substantial portions of the Software.
 | 
						|
 | 
						|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
# SOFTWARE.
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import torch
 | 
						|
from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer
 | 
						|
import deepspeed
 | 
						|
from bigdl.llm import optimize_model
 | 
						|
import torch
 | 
						|
import intel_extension_for_pytorch as ipex
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from benchmark_util import BenchmarkWrapper
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument('--local_rank', type=int, default=0, help='this is automatically set when using deepspeed launcher')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    world_size = int(os.getenv("WORLD_SIZE", "1"))
 | 
						|
    local_rank = int(os.getenv("RANK", "-1")) # RANK is automatically set by CCL distributed backend
 | 
						|
    if local_rank == -1: # args.local_rank is automatically set by deepspeed subprocess command
 | 
						|
        local_rank = args.local_rank
 | 
						|
 | 
						|
    # Native Huggingface transformers loading
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(
 | 
						|
        model_path,
 | 
						|
        device_map={"": "cpu"},
 | 
						|
        low_cpu_mem_usage=True,
 | 
						|
        torch_dtype=torch.float16,
 | 
						|
        trust_remote_code=True,
 | 
						|
        use_cache=True
 | 
						|
    )
 | 
						|
 | 
						|
    # Parallelize model on deepspeed
 | 
						|
    model = deepspeed.init_inference(
 | 
						|
        model,
 | 
						|
        mp_size = world_size,
 | 
						|
        dtype=torch.float16,
 | 
						|
        replace_method="auto"
 | 
						|
    )
 | 
						|
 | 
						|
    # Apply BigDL-LLM INT4 optimizations on transformers
 | 
						|
    model = optimize_model(model.module.to(f'cpu'), low_bit='sym_int4')
 | 
						|
 | 
						|
    model = model.to(f'cpu:{local_rank}')
 | 
						|
 | 
						|
    print(model)
 | 
						|
    model = BenchmarkWrapper(model, do_print=True)
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        # Batch tokenizing
 | 
						|
        prompt = args.prompt
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'cpu:{local_rank}')
 | 
						|
        # ipex model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict,
 | 
						|
                                use_cache=True)
 | 
						|
        # start inference
 | 
						|
        start = time.time()
 | 
						|
        # if your selected model is capable of utilizing previous key/value attentions
 | 
						|
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
						|
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
						|
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                do_sample=False,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        end = time.time()
 | 
						|
        if local_rank == 0:
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            print('-'*20, 'Output', '-'*20)
 | 
						|
            print(output_str)
 | 
						|
            print(f'Inference time: {end - start} s')
 |