156 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# ===========================================================================
 | 
						|
#
 | 
						|
# This file is adapted from
 | 
						|
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
 | 
						|
# which is licensed under the MIT license:
 | 
						|
#
 | 
						|
# MIT License
 | 
						|
#
 | 
						|
# Copyright (c) 2023 MIT HAN Lab
 | 
						|
#
 | 
						|
# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
# of this software and associated documentation files (the "Software"), to deal
 | 
						|
# in the Software without restriction, including without limitation the rights
 | 
						|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
# copies of the Software, and to permit persons to whom the Software is
 | 
						|
# furnished to do so, subject to the following conditions:
 | 
						|
#
 | 
						|
# The above copyright notice and this permission notice shall be included in all
 | 
						|
# copies or substantial portions of the Software.
 | 
						|
#
 | 
						|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
# SOFTWARE.
 | 
						|
 | 
						|
import warnings
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
from streaming_llm.utils import load, download_url, load_jsonl
 | 
						|
from streaming_llm.enable_streaming_llm import enable_streaming_llm
 | 
						|
warnings.filterwarnings("ignore")
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
						|
    outputs = model(
 | 
						|
        input_ids=input_ids,
 | 
						|
        past_key_values=past_key_values,
 | 
						|
        use_cache=True,
 | 
						|
    )
 | 
						|
    past_key_values = outputs.past_key_values
 | 
						|
    pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
    generated_ids = [pred_token_idx.item()]
 | 
						|
    pos = 0
 | 
						|
    for _ in range(max_gen_len - 1):
 | 
						|
        outputs = model(
 | 
						|
            input_ids=pred_token_idx,
 | 
						|
            past_key_values=past_key_values,
 | 
						|
            use_cache=True,
 | 
						|
        )
 | 
						|
        past_key_values = outputs.past_key_values
 | 
						|
        pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
						|
        generated_ids.append(pred_token_idx.item())
 | 
						|
        generated_text = (
 | 
						|
            tokenizer.decode(
 | 
						|
                generated_ids,
 | 
						|
                skip_special_tokens=True,
 | 
						|
                clean_up_tokenization_spaces=True,
 | 
						|
                spaces_between_special_tokens=False,
 | 
						|
            )
 | 
						|
            .strip()
 | 
						|
            .split(" ")
 | 
						|
        )
 | 
						|
 | 
						|
        now = len(generated_text) - 1
 | 
						|
        if now > pos:
 | 
						|
            print(" ".join(generated_text[pos:now]), end=" ", flush=True)
 | 
						|
            pos = now
 | 
						|
 | 
						|
        if pred_token_idx == tokenizer.eos_token_id:
 | 
						|
            break
 | 
						|
    print(" ".join(generated_text[pos:]), flush=True)
 | 
						|
    return past_key_values
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def streaming_inference(model, tokenizer, prompts, kv_cache=None, max_gen_len=1000):
 | 
						|
    past_key_values = None
 | 
						|
    for idx, prompt in enumerate(prompts):
 | 
						|
        prompt = "USER: " + prompt + "\n\nASSISTANT: "
 | 
						|
        print("\n" + prompt, end="")
 | 
						|
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						|
        input_ids = input_ids.to(model.device)
 | 
						|
        seq_len = input_ids.shape[1]
 | 
						|
        if kv_cache is not None:
 | 
						|
            space_needed = seq_len + max_gen_len
 | 
						|
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
						|
 | 
						|
        past_key_values = greedy_generate(
 | 
						|
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    model, tokenizer = load(args.repo_id_or_model_path)
 | 
						|
    test_filepath = os.path.join(args.data_root, "mt_bench.jsonl")
 | 
						|
    print(f"Loading data from {test_filepath} ...")
 | 
						|
 | 
						|
    if not os.path.exists(test_filepath):
 | 
						|
        download_url(
 | 
						|
            "https://raw.githubusercontent.com/lm-sys/FastChat/main/fastchat/llm_judge/data/mt_bench/question.jsonl",
 | 
						|
            args.data_root,
 | 
						|
        )
 | 
						|
        os.rename(os.path.join(args.data_root, "question.jsonl"), test_filepath)
 | 
						|
 | 
						|
    list_data = load_jsonl(test_filepath)
 | 
						|
    prompts = []
 | 
						|
    for sample in list_data[1:5]:
 | 
						|
        prompts += sample["turns"]
 | 
						|
 | 
						|
    if args.enable_streaming:
 | 
						|
        kv_cache = enable_streaming_llm(
 | 
						|
            model, start_size=args.start_size, recent_size=args.recent_size
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        kv_cache = None
 | 
						|
 | 
						|
    streaming_inference(
 | 
						|
        model,
 | 
						|
        tokenizer,
 | 
						|
        prompts,
 | 
						|
        kv_cache,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument(
 | 
						|
        "--repo-id-or-model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
 | 
						|
    )
 | 
						|
    parser.add_argument("--data-root", type=str, default="data/")
 | 
						|
    parser.add_argument("--enable-streaming", action="store_true")
 | 
						|
    parser.add_argument("--start-size", type=int, default=4)
 | 
						|
    parser.add_argument("--recent-size", type=int, default=2000)
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    main(args)
 |