* init fastapi-serving one card * mv api code to source * update worker * update for style-check * add worker * update bash * update * update worker name and add readme * rename update * rename to fastapi
		
			
				
	
	
		
			78 lines
		
	
	
		
			No EOL
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			No EOL
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch.distributed as dist
 | 
						|
from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker
 | 
						|
from ipex_llm.serving.fastapi import FastApp
 | 
						|
from transformers.utils import logging
 | 
						|
from transformers import AutoTokenizer
 | 
						|
import uvicorn
 | 
						|
import asyncio
 | 
						|
from typing import Dict
 | 
						|
import argparse
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
init_pipeline_parallel()
 | 
						|
my_rank = dist.get_rank()
 | 
						|
my_size = dist.get_world_size()
 | 
						|
device = f"xpu:{my_rank}"
 | 
						|
logger.info(f"rank: {my_rank}, size: {my_size}")
 | 
						|
result_dict: Dict[str, str] = {}
 | 
						|
local_rank = my_rank
 | 
						|
 | 
						|
async def main():
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--low-bit', type=str, default='sym_int4',
 | 
						|
                        help='The quantization type the model will convert to.')
 | 
						|
    parser.add_argument('--port', type=int, default=8000,
 | 
						|
                        help='The port number on which the server will run.')
 | 
						|
    parser.add_argument('--max-num-seqs', type=int, default=8,
 | 
						|
                        help='Max num sequences in a batch.')
 | 
						|
    parser.add_argument('--max-prefilled-seqs', type=int, default=0,
 | 
						|
                        help='Max num sequences in a batch during prefilling.')
 | 
						|
    
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    low_bit = args.low_bit
 | 
						|
    max_num_seqs = args.max_num_seqs
 | 
						|
    max_prefilled_seqs = args.max_prefilled_seqs
 | 
						|
 | 
						|
    # serialize model initialization so that we do not run out of CPU memory
 | 
						|
    for i in range(my_size):
 | 
						|
        if my_rank == i:
 | 
						|
            logger.info("start model initialization")
 | 
						|
            local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
 | 
						|
            logger.info("model initialized")
 | 
						|
        dist.barrier()
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
 | 
						|
    if tokenizer.pad_token is None:
 | 
						|
        tokenizer.pad_token = tokenizer.eos_token
 | 
						|
 | 
						|
    myapp = FastApp(local_model, tokenizer)
 | 
						|
    if local_rank == 0:
 | 
						|
        config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
 | 
						|
        server = uvicorn.Server(config)
 | 
						|
        await server.serve()
 | 
						|
    else:
 | 
						|
        while True:
 | 
						|
            await asyncio.sleep(0)
 | 
						|
            await local_model.process_step(tokenizer, result_dict)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    asyncio.run(main()) |