ipex-llm/python/llm/src/ipex_llm/transformers/models/gemma2.py
2024-09-10 14:19:57 +08:00

186 lines
7.9 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma2/modeling_gemma2.py
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import Optional, Tuple
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.utils import GELU
from ipex_llm.transformers.models.utils import should_use_fuse_rope, use_sdp, use_sdp_causal
from transformers.cache_utils import Cache
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2Attention
from transformers.models.gemma2.modeling_gemma2 import repeat_kv, apply_rotary_pos_emb
def merge_qkv(module: torch.nn.Module):
return merge_qkv_base(module, Gemma2Attention)
def gemma2_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
# ipex-llm change start: add kv_seq_len in past_key_values
if past_key_values is not None:
if cache_position is not None:
kv_seq_len = cache_position[-1].item() + 1
else:
if input_ids is not None:
kv_seq_len = input_ids.size(1)
else:
kv_seq_len = inputs_embeds.size(1)
past_key_values.kv_seq_len = kv_seq_len
# ipex-llm change end
return Gemma2Model.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position
)
def gemma2_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
# IPEX-LLM OPT: fuse rope
if should_use_fuse_rope(hidden_states, position_ids, self.training):
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
cos, sin = None, None
else:
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"sliding_window": self.sliding_window,
"cache_position": cache_position,
}
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
# IPEX_LLM OPT: sdp
kv_seq_len = q_len if past_key_value is None else past_key_value.kv_seq_len
if (use_sdp_causal(q_len, kv_seq_len, -1, query_states, self.training)
and kv_seq_len <= key_states.size(2) and
(self.sliding_window is None or kv_seq_len < self.sliding_window)):
import xe_addons
attn_weights = None
attn_output = xe_addons.gemma2_sdp_causal(query_states,
key_states[:, :, :kv_seq_len, :],
value_states[:, :, :kv_seq_len, :],
attention_mask[:, :, :q_len, :kv_seq_len],
self.config.attn_logit_softcapping,
self.scaling)
elif use_sdp(q_len, kv_seq_len, -1, query_states):
import xe_addons
attn_weights = None
if self.sliding_window is not None:
attn_mask = attention_mask[:, :, :q_len, : key_states.shape[-2]]
else:
attn_mask = attention_mask
attn_output = xe_addons.gemma2_sdp(query_states,
key_states,
value_states,
attn_mask,
self.config.attn_logit_softcapping,
self.scaling)
else:
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if self.config.attn_logit_softcapping is not None:
attn_weights = attn_weights / self.config.attn_logit_softcapping
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * self.config.attn_logit_softcapping
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value