61 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="D:\llm-models\Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument('--load_in_low_bit', type=str, default="sym_int8",
 | 
						|
                        help='Load in low bit to use')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                 load_in_low_bit=args.load_in_low_bit)
 | 
						|
    
 | 
						|
    print(model)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
        print("finish to load")
 | 
						|
        print('input length:', len(input_ids[0]))
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
 | 
						|
        end = time.time()
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 | 
						|
 | 
						|
    print('-'*80)
 | 
						|
    print('done')
 |