ipex-llm/python/llm/example/transformers/transformers_int4_pipeline.py
2023-07-03 14:13:33 +08:00

61 lines
2.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import os
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
from transformers import LlamaTokenizer, AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Transformer INT4 example')
parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf",
choices=['decapoda-research/llama-7b-hf', 'THUDM/chatglm-6b'],
help='The huggingface repo id for the larga language model to be downloaded'
', or the path to the huggingface checkpoint folder')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
if model_path == 'decapoda-research/llama-7b-hf':
# load_in_4bit=True in bigdl.llm.transformers will convert
# the relevant layers in the model into int4 format
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path)
input_str = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
with torch.inference_mode():
st = time.time()
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print(output_str)
print(f'Inference time: {end-st} s')
elif model_path == 'THUDM/chatglm-6b':
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
input_str = "晚上睡不着应该怎么办"
with torch.inference_mode():
st = time.time()
input_ids = tokenizer.encode(input_str, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print(output_str)
print(f'Inference time: {end-st} s')