* fix qwen in docker * add patch for model_adapter.py in fastchat * add patch for model_adapter.py in fastchat |
||
|---|---|---|
| .. | ||
| Dockerfile | ||
| entrypoint.sh | ||
| model_adapter.py.patch | ||
| README.md | ||
Build/Use BigDL-LLM-serving cpu image
Build Image
docker build \
--build-arg http_proxy=.. \
--build-arg https_proxy=.. \
--build-arg no_proxy=.. \
--rm --no-cache -t intelanalytics/bigdl-llm-serving-cpu:2.5.0-SNAPSHOT .
Use the image for doing cpu serving
You could use the following bash script to start the container. Please be noted that the CPU config is specified for Xeon CPUs, change it accordingly if you are not using a Xeon CPU.
#/bin/bash
export DOCKER_IMAGE=intelanalytics/bigdl-llm-serving-cpu:2.5.0-SNAPSHOT
sudo docker run -itd \
--net=host \
--cpuset-cpus="0-47" \
--cpuset-mems="0" \
--memory="32G" \
--name=CONTAINER_NAME \
--shm-size="16g" \
$DOCKER_IMAGE
After the container is booted, you could get into the container through docker exec.
To run model-serving using BigDL-LLM as backend, you can refer to this document.
Also you can set environment variables and start arguments while running a container to get serving started initially. You may need to boot several containers to support. One controller container and at least one worker container are needed. The api server address(host and port) and controller address are set in controller container, and you need to set the same controller address as above, model path on your machine and worker address in worker container.
To start a controller container:
#/bin/bash
export DOCKER_IMAGE=intelanalytics/bigdl-llm-serving-cpu:2.5.0-SNAPSHOT
controller_host=localhost
controller_port=23000
api_host=localhost
api_port=8000
sudo docker run -itd \
--net=host \
--privileged \
--cpuset-cpus="0-47" \
--cpuset-mems="0" \
--memory="64G" \
--name=serving-cpu-controller \
--shm-size="16g" \
-e ENABLE_PERF_OUTPUT="true" \
-e CONTROLLER_HOST=$controller_host \
-e CONTROLLER_PORT=$controller_port \
-e API_HOST=$api_host \
-e API_PORT=$api_port \
$DOCKER_IMAGE -m controller
To start a worker container:
#/bin/bash
export DOCKER_IMAGE=intelanalytics/bigdl-llm-serving-cpu:2.5.0-SNAPSHOT
export MODEL_PATH=YOUR_MODEL_PATH
controller_host=localhost
controller_port=23000
worker_host=localhost
worker_port=23001
sudo docker run -itd \
--net=host \
--privileged \
--cpuset-cpus="0-47" \
--cpuset-mems="0" \
--memory="64G" \
--name="serving-cpu-worker" \
--shm-size="16g" \
-e ENABLE_PERF_OUTPUT="true" \
-e CONTROLLER_HOST=$controller_host \
-e CONTROLLER_PORT=$controller_port \
-e WORKER_HOST=$worker_host \
-e WORKER_PORT=$worker_port \
-e OMP_NUM_THREADS=48 \
-e MODEL_PATH=/llm/models/Llama-2-7b-chat-hf \
-v $MODEL_PATH:/llm/models/ \
$DOCKER_IMAGE -m worker -w vllm_worker # use -w model_worker if vllm worker is not needed
Then you can use curl for testing, an example could be:
curl -X POST -H "Content-Type: application/json" -d '{
"model": "YOUR_MODEL_NAME",
"prompt": "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
"n": 1,
"best_of": 1,
"use_beam_search": false,
"stream": false
}' http://localhost:8000/v1/completions