ipex-llm/python/llm/example/GPU
Cengguang Zhang 7ec82c6042
LLM: add README.md for Long-Context examples. (#10765)
* LLM: add readme to long-context examples.

* add precision.

* update wording.

* add GPU type.

* add Long-Context example to GPU examples.

* fix comments.

* update max input length.

* update max length.

* add output length.

* fix wording.
2024-04-17 15:34:59 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP Update FLEX in Deepspeed README (#10774) 2024-04-17 09:28:24 +08:00
Deepspeed-AutoTP-FastAPI Add deepsped-autoTP-Fastapi serving (#10748) 2024-04-16 14:03:23 +08:00
HF-Transformers-AutoModels GPU configuration update for examples (windows pip installer, etc.) (#10762) 2024-04-15 17:42:52 +08:00
LangChain Add tokenizer_id in Langchain (#10588) 2024-04-03 14:25:35 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
LLM-Finetuning Fix gradio version in axolotl example (#10776) 2024-04-17 10:23:43 +08:00
Long-Context LLM: add README.md for Long-Context examples. (#10765) 2024-04-17 15:34:59 +08:00
ModelScope-Models Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Pipeline-Parallel-Inference Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
PyTorch-Models GPU configuration update for examples (windows pip installer, etc.) (#10762) 2024-04-15 17:42:52 +08:00
Speculative-Decoding Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
vLLM-Serving Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
README.md LLM: add README.md for Long-Context examples. (#10765) 2024-04-17 15:34:59 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastApi: running distributed inference using DeepSpeed AutoTP and start serving with FastApi(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs
  • Long-Context: running long-context generation with IPEX-LLM on Intel Arc™ A770 Graphics.

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.