2019 lines
106 KiB
Python
2019 lines
106 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
# this code is copied from llama2 example test, and added performance test
|
|
import torch
|
|
import time
|
|
import gc
|
|
import traceback
|
|
import threading
|
|
import csv
|
|
|
|
import numpy as np
|
|
from datetime import date
|
|
|
|
import os
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
import sys
|
|
sys.stdout.reconfigure(encoding='utf-8')
|
|
|
|
from ipex_llm.utils import BenchmarkWrapper
|
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
|
from ipex_llm.utils.common import invalidInputError
|
|
|
|
LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
|
'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
|
|
'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
|
|
'lmsys/vicuna-13b-v1.3','lmsys/vicuna-33b-v1.3','project-baize/merged-baize-30b']
|
|
|
|
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
|
|
|
|
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
|
|
|
|
PHI3VISION_IDS = ['microsoft/phi-3-vision-128k-instruct']
|
|
|
|
QWENVL_IDS = ['Qwen/Qwen-VL-Chat']
|
|
|
|
results = []
|
|
excludes = []
|
|
|
|
def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials, load_time, lookahead):
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if lookahead:
|
|
output_ids = model.generate(input_ids, lookahead=2, do_sample=False, max_matching_ngram_size=2, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
torch.xpu.empty_cache()
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
if lookahead or os.environ.get("IPEX_LLM_PERFORMANCE_MODE", None) == "1":
|
|
result[in_out].append([model.first_token_time, (end - st - model.first_token_time)/(model.n_token_generated - 1), 0,
|
|
actual_in_len, actual_out_len, load_time, 0])
|
|
else:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
|
|
|
|
def get_continuation_input_str():
|
|
# all use 8192.txt for prompt preparation for now; and keep 'utf-8' as character encoding mode
|
|
return open(f"prompt/continuation/8192.txt", 'r', encoding='utf-8').read()
|
|
|
|
|
|
def preprocess_prompt(tokenizer, in_len, task):
|
|
if task == 'summarize':
|
|
if in_len == 512:
|
|
input_str = open(f"prompt/summarize/cnn_239.txt", 'r').read()
|
|
elif in_len == 1024:
|
|
input_str = open(f"prompt/summarize/cnn_615.txt", 'r').read()
|
|
elif in_len == 2048:
|
|
input_str = open(f"prompt/summarize/cnn_824.txt", 'r').read()
|
|
elif in_len <= 256:
|
|
input_str = open(f"prompt/summarize/cnn_64.txt", 'r').read()
|
|
else:
|
|
input_str = open(f"prompt/summarize/cnn_5618.txt", 'r').read()
|
|
question = "Can you please summarize this article?"
|
|
prompt_format = "[INST] Article:```{}``` \n\n Question: {} \n\n [/INST]"
|
|
special_tokens_len = len(tokenizer.encode(prompt_format.format("", question), add_special_tokens=False))
|
|
max_article_len = in_len - special_tokens_len
|
|
article_ids = tokenizer.encode(input_str, add_special_tokens=False)
|
|
if len(article_ids) > max_article_len:
|
|
article_ids = article_ids[:max_article_len]
|
|
truncated_article_text = tokenizer.decode(article_ids, skip_special_tokens=True)
|
|
final_prompt = prompt_format.format(truncated_article_text, question)
|
|
input_ids = tokenizer.encode(final_prompt, return_tensors="pt", truncation=True, max_length=in_len)
|
|
elif task == 'QA':
|
|
if in_len == 512:
|
|
input_str = open(f"prompt/QA/orca_776.txt", 'r').read()
|
|
elif in_len == 1024:
|
|
input_str = open(f"prompt/QA/orca_99.txt", 'r').read()
|
|
elif in_len == 2048:
|
|
input_str = open(f"prompt/QA/orca_401.txt", 'r').read()
|
|
elif in_len == 4096:
|
|
input_str = open(f"prompt/QA/orca_497.txt", 'r').read()
|
|
else:
|
|
raise ValueError("No corresponding prompt available now, will be added later.")
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
return input_ids
|
|
|
|
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation'):
|
|
# TODO: make a parameter
|
|
result= {}
|
|
if test_api == 'transformer_int4':
|
|
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
|
elif test_api == 'native_int4':
|
|
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
|
elif test_api == 'optimize_model':
|
|
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
|
elif test_api == 'transformer_int4_gpu':
|
|
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding)
|
|
elif test_api == 'transformer_int4_fp16_gpu':
|
|
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True, lookahead=lookahead, task=task)
|
|
elif test_api == 'optimize_model_gpu':
|
|
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
|
elif test_api == 'pytorch_autocast_bf16':
|
|
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'ipex_fp16_gpu':
|
|
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == "bigdl_fp16_gpu":
|
|
result = result = run_bigdl_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'deepspeed_transformer_int4_cpu':
|
|
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
|
elif test_api == 'transformer_int4_gpu_win':
|
|
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
elif test_api == 'transformer_int4_fp16_gpu_win':
|
|
result = run_transformer_int4_fp16_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
elif test_api == 'transformer_int4_loadlowbit_gpu_win':
|
|
# drop the results of the first time for better performance
|
|
run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
elif test_api == 'transformer_int4_fp16_loadlowbit_gpu_win':
|
|
# drop the results of the first time for better performance
|
|
run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
result = run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
|
|
elif test_api == 'transformer_autocast_bf16':
|
|
result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'bigdl_ipex_bf16':
|
|
result = run_bigdl_ipex_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'bigdl_ipex_int4':
|
|
result = run_bigdl_ipex_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'bigdl_ipex_int8':
|
|
result = run_bigdl_ipex_int8(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'deepspeed_optimize_model_gpu':
|
|
result = run_deepspeed_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding)
|
|
elif test_api == 'speculative_cpu':
|
|
result = run_speculative_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'speculative_gpu':
|
|
result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
|
elif test_api == 'pipeline_parallel_gpu':
|
|
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
|
elif test_api == 'transformers_int4_npu_win':
|
|
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
|
else:
|
|
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
|
|
|
|
for in_out_pair in in_out_pairs:
|
|
if result and result[in_out_pair]:
|
|
results.append([repo_id,
|
|
round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
|
|
round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
|
|
round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2) if not lookahead else 'N/A',
|
|
in_out_pair,
|
|
batch_size,
|
|
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
|
|
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding,
|
|
round(result[in_out_pair][-1][5], 2),
|
|
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'int4_fp16_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
|
|
streaming if 'win' in test_api else 'N/A',
|
|
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A'],
|
|
)
|
|
|
|
|
|
def get_model_path(repo_id, local_model_hub):
|
|
if local_model_hub:
|
|
repo_model_name = repo_id.split("/")[1]
|
|
local_model_path = local_model_hub + os.path.sep + repo_model_name
|
|
invalidInputError(os.path.isdir(local_model_path),
|
|
local_model_path + " not exists!, Please check your models' folder.")
|
|
return local_model_path
|
|
else:
|
|
return repo_id
|
|
|
|
|
|
def run_native_int4(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials):
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
from ipex_llm.transformers import BigdlNativeForCausalLM
|
|
from ipex_llm import llm_convert
|
|
if "chatglm" in repo_id.lower():
|
|
family = "chatglm"
|
|
elif "llama" in repo_id.lower():
|
|
family = "llama"
|
|
else:
|
|
invalidInputError(False, "Model family unknown: " + repo_id)
|
|
|
|
bigdl_llm_path = llm_convert(model=model_path,
|
|
outfile="./", outtype='int4', model_family=family)
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
n_ctx = in_len + out_len if in_len + out_len > 512 else 512
|
|
for i in range(num_trials + warm_up):
|
|
model = BigdlNativeForCausalLM.from_pretrained(bigdl_llm_path, model_family=family, n_ctx=n_ctx)
|
|
input_ids = model.tokenize(input_str)
|
|
input_ids = input_ids[:in_len]
|
|
true_input = model.batch_decode(input_ids)
|
|
st = time.perf_counter()
|
|
output = model(true_input, max_tokens=out_len)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
print(output)
|
|
|
|
os.remove(bigdl_llm_path)
|
|
|
|
|
|
def run_transformer_int4(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
def run_pytorch_autocast_bf16(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
# TODO: need verify chatglm family run bf16.
|
|
print("Currently pytorch do not support bfloat16 on cpu for chatglm models. Will skip it")
|
|
return
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
print("input tokens: {}".format(input_ids.shape[1]))
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
def run_optimize_model(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size):
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
|
from ipex_llm import optimize_model
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True, low_cpu_mem_usage=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size,
|
|
cpu_embedding,
|
|
fp16=False,
|
|
lookahead=False,
|
|
task='continuation'):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
if fp16:
|
|
torch_dtype = torch.float16
|
|
else:
|
|
torch_dtype = torch.float32
|
|
st = time.perf_counter()
|
|
origin_repo_id = repo_id.replace("-4bit", "")
|
|
if origin_repo_id in CHATGLM_IDS:
|
|
if "4bit" in repo_id:
|
|
model = AutoModel.load_low_bit(model_path, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True,
|
|
cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch_dtype).eval()
|
|
else:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True,
|
|
torch_dtype=torch_dtype).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding)
|
|
elif origin_repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch_dtype).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif origin_repo_id in PHI3VISION_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"],
|
|
trust_remote_code=True, use_cache=True,
|
|
cpu_embedding=cpu_embedding, torch_dtype=torch_dtype).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
if "4bit" in repo_id:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True,
|
|
cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch_dtype).eval()
|
|
else:
|
|
if 'starcoder' in repo_id:
|
|
# Load starcoder-15.5b model in bf16 format to avoid CPU OOM.
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.bfloat16 if not fp16 else torch.float16).eval()
|
|
# Convert the low-bit model back to fp32 for performance considerations.
|
|
if not fp16:
|
|
model = model.float()
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True,
|
|
cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch_dtype).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
model = model.to('xpu')
|
|
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
if not lookahead and os.environ.get("IPEX_LLM_PERFORMANCE_MODE", None) != "1":
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
if task == 'continuation':
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
elif task in ['QA', 'summarize']:
|
|
input_ids = preprocess_prompt(tokenizer, in_len, task)
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
thread = threading.Thread(target=run_model_in_thread, args=(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials, load_time, lookahead))
|
|
thread.start()
|
|
thread.join()
|
|
|
|
if result[in_out]:
|
|
first_token_latency = round(np.mean(result[in_out], axis=0)[0]*1000.0, 2)
|
|
rest_token_latency = round(np.mean(result[in_out], axis=0)[1]*1000.0, 2)
|
|
encoder_time = round(np.mean(result[in_out], axis=0)[2]*1000.0, 2)
|
|
input_output_tokens = in_out
|
|
actual_input_output_tokens = f'{int(np.mean(result[in_out], axis=0)[3])}' + f'-{int(np.mean(result[in_out], axis=0)[4])}'
|
|
load_time = round(result[in_out][-1][5], 2)
|
|
peak_mem = result[in_out][-1][6]
|
|
streaming = 'N/A'
|
|
use_fp16_torch_dtype = 'N/A'
|
|
with open(csv_name, mode='a', newline='') as file:
|
|
csv_writer = csv.writer(file)
|
|
file.seek(0, os.SEEK_END)
|
|
global line_counter
|
|
if file.tell() == 0:
|
|
csv_writer.writerow(["", "model", "1st token avg latency (ms)", "2+ avg latency (ms/token)", "encoder time (ms)", "input/output tokens", "batch_size", "actual input/output tokens", "num_beams", "low_bit", "cpu_embedding", "model loading time (s)", "peak mem (GB)", "streaming", "use_fp16_torch_dtype"])
|
|
line_counter +=1
|
|
csv_writer.writerow([line_counter-1, repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, batch_size, actual_input_output_tokens, num_beams, low_bit, '', load_time, peak_mem, streaming, use_fp16_torch_dtype])
|
|
line_counter += 1
|
|
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def transformers_int4_npu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size):
|
|
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
torch_dtype='auto', attn_implementation="eager").eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True, attn_implementation="eager").eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
|
use_cache=True, attn_implementation="eager").eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def run_optimize_model_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size):
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
from ipex_llm import optimize_model
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
|
trust_remote_code=True, use_cache=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True, low_cpu_mem_usage=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
|
|
trust_remote_code=True, use_cache=True).eval()
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_ipex_fp16_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_bigdl_fp16_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True,
|
|
load_in_low_bit="fp16", torch_dtype=torch.float16)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True,
|
|
load_in_low_bit="fp16",
|
|
torch_dtype=torch.float16)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True,
|
|
load_in_low_bit="fp16",
|
|
torch_dtype=torch.float16)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
def run_deepspeed_transformer_int4_cpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size):
|
|
from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer
|
|
import deepspeed
|
|
from ipex_llm import optimize_model
|
|
import argparse
|
|
# parser is for deepspeed subprocesses' inline parameter
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
|
parser.add_argument('--local_rank', type=str, default=0, help='this is automatically set when using deepspeed launcher')
|
|
args = parser.parse_args()
|
|
local_rank = int(os.getenv("RANK", "1"))
|
|
if local_rank == -1:
|
|
local_rank = args.local_rank
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
# Note: only tested cpu Llama2-7b
|
|
# Native Huggingface transformers loading to enable deepspeed init
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
# Parallelize model on deepspeed
|
|
model = deepspeed.init_inference(model, mp_size=world_size,
|
|
dtype=torch.float16,
|
|
replace_method="auto")
|
|
|
|
# Apply BigDL-LLM INT4 optimization to enable BenchmarkWrapper
|
|
# Note: only tested sym_int4
|
|
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit)
|
|
model = model.to(f'cpu:{local_rank}')
|
|
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
if local_rank == 0:
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if local_rank == 0:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up :
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_gpu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding,
|
|
batch_size,
|
|
streaming):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAVA_IDS:
|
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
|
sys.path.append(rf"{llava_repo_dir}")
|
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in PHI3VISION_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"],
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in QWENVL_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
modules_to_not_convert=['c_fc', 'out_proj'],
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if streaming:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams, streamer=streamer)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if not streaming:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
# torch.xpu.empty_cache() # this may make first token slower
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_fp16_gpu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding,
|
|
batch_size,
|
|
streaming):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAVA_IDS:
|
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
|
sys.path.append(rf"{llava_repo_dir}")
|
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in PHI3VISION_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"],
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in QWENVL_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
modules_to_not_convert=['c_fc', 'out_proj'],
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
torch_dtype=torch.float16).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if streaming:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams, streamer=streamer)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if not streaming:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
# torch.xpu.empty_cache() # this may make first token slower
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_loadlowbit_gpu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding,
|
|
batch_size,
|
|
streaming):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load BigDL-LLM optimized low bit model
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAVA_IDS:
|
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
|
sys.path.append(rf"{llava_repo_dir}")
|
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in PHI3VISION_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"],
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in QWENVL_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
modules_to_not_convert=['c_fc', 'out_proj'],
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if streaming:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams, streamer=streamer)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if not streaming:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
# torch.xpu.empty_cache() # this may make first token slower
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
cpu_embedding,
|
|
batch_size,
|
|
streaming):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load BigDL-LLM optimized low bit model
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in LLAVA_IDS:
|
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
|
sys.path.append(rf"{llava_repo_dir}")
|
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in PHI3VISION_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
_attn_implementation="eager",
|
|
modules_to_not_convert=["vision_embed_tokens"],
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
elif repo_id in QWENVL_IDS:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
modules_to_not_convert=['c_fc', 'out_proj'],
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
|
|
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
|
|
model = model.half().to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
try:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if streaming:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams, streamer=streamer)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
if not streaming:
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
# torch.xpu.empty_cache() # this may make first token slower
|
|
except RuntimeError:
|
|
traceback.print_exc()
|
|
pass
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
model.to('cpu')
|
|
torch.xpu.synchronize()
|
|
torch.xpu.empty_cache()
|
|
del model
|
|
gc.collect()
|
|
return result
|
|
|
|
|
|
def run_transformer_autocast_bf16( repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in bf16,
|
|
# which convert the relevant layers in the model into BF16 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
model = BenchmarkWrapper(model)
|
|
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_bigdl_ipex_bf16(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
os.environ["BIGDL_OPT_IPEX"] = "true"
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
# Load model in bf16,
|
|
# which convert the relevant layers in the model into BF16 format
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
if not hasattr(model.config, "token_latency"):
|
|
model.config.token_latency = True
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_bigdl_ipex_int4(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
os.environ["BIGDL_OPT_IPEX"] = "true"
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
if not hasattr(model.config, "token_latency"):
|
|
model.config.token_latency = True
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_bigdl_ipex_int8(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
os.environ["BIGDL_OPT_IPEX"] = "true"
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
|
|
use_cache=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
if not hasattr(model.config, "token_latency"):
|
|
model.config.token_latency = True
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
result = {}
|
|
with torch.inference_mode(), torch.autocast("cpu"):
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_deepspeed_optimize_model_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size,
|
|
cpu_embedding):
|
|
def get_int_from_env(env_keys, default):
|
|
for e in env_keys:
|
|
val = int(os.environ.get(e, -1))
|
|
if val >= 0:
|
|
return val
|
|
return int(default)
|
|
local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0")
|
|
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
|
|
os.environ["RANK"] = str(local_rank)
|
|
os.environ["WORLD_SIZE"] = str(world_size)
|
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
|
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
from ipex_llm import optimize_model
|
|
import deepspeed
|
|
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
|
from deepspeed.accelerator import set_accelerator, get_accelerator
|
|
from intel_extension_for_deepspeed import XPU_Accelerator
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
print('model_path:', model_path)
|
|
# First use CPU as accelerator
|
|
# Convert to deepspeed model and apply bigdl-llm optimization on CPU to decrease GPU memory usage
|
|
current_accel = CPU_Accelerator()
|
|
set_accelerator(current_accel)
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
|
|
torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
|
|
torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
|
|
torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = deepspeed.init_inference(model, mp_size=world_size,
|
|
dtype=torch.bfloat16, replace_method="auto",)
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
# Use bigdl-llm `optimize_model` to convert the model into optimized low bit format
|
|
# Convert the rest of the model into float16 to reduce allreduce traffic
|
|
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit, cpu_embedding=cpu_embedding).to(torch.float16)
|
|
# Next, use XPU as accelerator to speed up inference
|
|
current_accel = XPU_Accelerator()
|
|
set_accelerator(current_accel)
|
|
# Move model back to xpu
|
|
model = model.to(f'xpu:{local_rank}')
|
|
|
|
# Modify backend related settings
|
|
if world_size > 1:
|
|
get_accelerator().set_device(local_rank)
|
|
dist_backend = get_accelerator().communication_backend_name()
|
|
import deepspeed.comm.comm
|
|
deepspeed.comm.comm.cdb = None
|
|
from deepspeed.comm.comm import init_distributed
|
|
init_distributed()
|
|
|
|
model = BenchmarkWrapper(model, do_print=True)
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(f'xpu:{local_rank}')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
torch.xpu.empty_cache()
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
|
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_speculative_cpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
from ipex_llm.transformers.convert import get_enable_ipex
|
|
|
|
_enable_ipex = get_enable_ipex()
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
inputs = tokenizer(input_list, return_tensors="pt")
|
|
input_ids = inputs.input_ids
|
|
attention_mask = inputs.attention_mask
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
if _enable_ipex:
|
|
output_ids = model.generate(input_ids, do_sample=False,
|
|
max_new_tokens=out_len, min_new_tokens=out_len,
|
|
num_beams=num_beams, attention_mask=attention_mask)
|
|
else:
|
|
output_ids = model.generate(input_ids, do_sample=False,max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
end = time.perf_counter()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
print(output[0])
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
if i >= warm_up:
|
|
e2e_time = end - st
|
|
rest_cost_mean = (e2e_time - model.first_token_time)/(model.n_token_generated - 1)
|
|
result[in_out].append([model.first_token_time, rest_cost_mean, 0,
|
|
actual_in_len, actual_out_len, load_time])
|
|
return result
|
|
|
|
|
|
def run_speculative_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
batch_size):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
|
|
st = time.perf_counter()
|
|
if repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
elif repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
|
|
use_cache=True, speculative=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = model.to('xpu')
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s".format(load_time))
|
|
|
|
result = {}
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(model.device)
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
if i >= warm_up:
|
|
e2e_time = end - st
|
|
rest_cost_mean = (e2e_time - model.first_token_time)/(model.n_token_generated - 1)
|
|
result[in_out].append([model.first_token_time, rest_cost_mean, 0,
|
|
actual_in_len, actual_out_len, load_time])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
def run_pipeline_parallel_gpu(repo_id,
|
|
local_model_hub,
|
|
in_out_pairs,
|
|
warm_up,
|
|
num_trials,
|
|
num_beams,
|
|
low_bit,
|
|
batch_size,
|
|
cpu_embedding,
|
|
fp16=False):
|
|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
|
|
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
|
init_pipeline_parallel()
|
|
model_path = get_model_path(repo_id, local_model_hub)
|
|
pipeline_parallel_stages = torch.distributed.get_world_size()
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
st = time.perf_counter()
|
|
origin_repo_id = repo_id.replace("-4bit", "")
|
|
if origin_repo_id in CHATGLM_IDS:
|
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
elif origin_repo_id in LLAMA_IDS:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
|
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
if fp16:
|
|
model = model.half()
|
|
print("Convert model to half precision")
|
|
|
|
end = time.perf_counter()
|
|
load_time = end - st
|
|
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
|
|
|
result = {}
|
|
local_rank = torch.distributed.get_rank()
|
|
with torch.inference_mode():
|
|
for in_out in in_out_pairs:
|
|
in_out_len = in_out.split("-")
|
|
in_len = int(in_out_len[0])
|
|
out_len = int(in_out_len[1])
|
|
input_str = get_continuation_input_str()
|
|
# As different tokenizer has different encodings,
|
|
# slice the input_ids to ensure the prompt length is required length.
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
input_ids = input_ids[:, :in_len]
|
|
true_str = tokenizer.batch_decode(input_ids)[0]
|
|
input_list = [true_str] * batch_size
|
|
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(f'xpu:{local_rank}')
|
|
actual_in_len = input_ids.shape[1]
|
|
result[in_out] = []
|
|
for i in range(num_trials + warm_up):
|
|
st = time.perf_counter()
|
|
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
|
min_new_tokens=out_len, num_beams=num_beams)
|
|
torch.xpu.synchronize()
|
|
end = time.perf_counter()
|
|
output_ids = output_ids.cpu()
|
|
print("model generate cost: " + str(end - st))
|
|
output = tokenizer.batch_decode(output_ids)
|
|
actual_out_len = output_ids.shape[1] - actual_in_len
|
|
print(output[0])
|
|
torch.xpu.empty_cache()
|
|
if i >= warm_up:
|
|
result[in_out].append([model.first_token_time, model.rest_cost_mean, 0,
|
|
actual_in_len, actual_out_len, load_time,])
|
|
del model
|
|
torch.xpu.empty_cache()
|
|
return result
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from omegaconf import OmegaConf
|
|
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
|
today = date.today()
|
|
if 'exclude' in conf:
|
|
excludes = conf['exclude']
|
|
streaming = False
|
|
use_fp16_torch_dtype = False
|
|
task = 'continuation'
|
|
if 'streaming' in conf:
|
|
streaming = conf['streaming']
|
|
if 'use_fp16_torch_dtype' in conf:
|
|
use_fp16_torch_dtype = conf['use_fp16_torch_dtype']
|
|
if 'task' in conf:
|
|
task = conf['task']
|
|
lookahead = False
|
|
|
|
import pandas as pd
|
|
for api in conf.test_api:
|
|
global csv_name
|
|
csv_name = f'{current_dir}/{api}-results-{today}.csv'
|
|
try:
|
|
line_counter = len(open(csv_name).readlines())
|
|
except:
|
|
line_counter = 0
|
|
if not OmegaConf.is_list(conf["batch_size"]):
|
|
batch_list = [conf["batch_size"]]
|
|
else:
|
|
batch_list = conf["batch_size"]
|
|
for batch_size in batch_list:
|
|
for model in conf.repo_id:
|
|
in_out_pairs = conf['in_out_pairs'].copy()
|
|
if excludes:
|
|
for in_out in conf['in_out_pairs']:
|
|
model_id_input = model + ':' + in_out.split('-')[0]
|
|
model_id_input_batch_size = model_id_input + ':' + str(batch_size)
|
|
if model_id_input in excludes or model_id_input_batch_size in excludes:
|
|
in_out_pairs.remove(in_out)
|
|
if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1:
|
|
lookahead = True
|
|
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
|
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task)
|
|
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
|
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
|
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
|
if "pipeline" in api or "deepspeed" in api:
|
|
if torch.distributed.get_rank() == 0:
|
|
df.index += max(line_counter - 1, 0)
|
|
if line_counter == 0:
|
|
df.to_csv(csv_name, mode='a')
|
|
else:
|
|
df.to_csv(csv_name, mode='a', header=None)
|
|
line_counter += len(df.index)
|
|
else:
|
|
df.index += max(line_counter - 1, 0)
|
|
if api not in ["transformer_int4_gpu", "transformer_int4_fp16_gpu"]:
|
|
if line_counter == 0:
|
|
df.to_csv(csv_name, mode='a')
|
|
else:
|
|
df.to_csv(csv_name, mode='a', header=None)
|
|
line_counter += len(df.index)
|
|
results = []
|