* howto guide for InferenceOptimizer * fix format in notebook * rename notebook & add github workflow * fix doc issue * fix notebook * fix typo * remove ipykernel * update notebook * adapt new theme * fix typo & remove necessary numpy
		
			
				
	
	
		
			87 lines
		
	
	
		
			No EOL
		
	
	
		
			3.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			No EOL
		
	
	
		
			3.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
Nano How-to Guides
 | 
						|
=========================
 | 
						|
.. note::
 | 
						|
    This page is still a work in progress. We are adding more guides.
 | 
						|
 | 
						|
In Nano How-to Guides, you could expect to find multiple task-oriented, bite-sized, and executable examples. These examples will show you various tasks that BigDL-Nano could help you accomplish smoothly.
 | 
						|
 | 
						|
Training Optimization
 | 
						|
-------------------------
 | 
						|
 | 
						|
PyTorch Lightning
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
* `How to accelerate a PyTorch Lightning application on training workloads through Intel® Extension for PyTorch* <Training/PyTorchLightning/accelerate_pytorch_lightning_training_ipex.html>`_
 | 
						|
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
 | 
						|
* `How to use the channels last memory format in your PyTorch Lightning application for training <Training/PyTorchLightning/pytorch_lightning_training_channels_last.html>`_
 | 
						|
* `How to conduct BFloat16 Mixed Precision training in your PyTorch Lightning application <Training/PyTorchLightning/pytorch_lightning_training_bf16.html>`_
 | 
						|
* `How to accelerate a computer vision data processing pipeline <Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline.html>`_
 | 
						|
 | 
						|
.. toctree::
 | 
						|
    :maxdepth: 1
 | 
						|
    :hidden:
 | 
						|
 | 
						|
    Training/PyTorchLightning/accelerate_pytorch_lightning_training_ipex
 | 
						|
    Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance
 | 
						|
    Training/PyTorchLightning/pytorch_lightning_training_channels_last
 | 
						|
    Training/PyTorchLightning/pytorch_lightning_training_bf16
 | 
						|
    Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline
 | 
						|
 | 
						|
TensorFlow
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
* `How to accelerate a TensorFlow Keras application on training workloads through multiple instances <Training/TensorFlow/accelerate_tensorflow_training_multi_instance.html>`_
 | 
						|
* |tensorflow_training_embedding_sparseadam_link|_
 | 
						|
 | 
						|
.. |tensorflow_training_embedding_sparseadam_link| replace:: How to optimize your model with a sparse ``Embedding`` layer and ``SparseAdam`` optimizer
 | 
						|
.. _tensorflow_training_embedding_sparseadam_link: Training/TensorFlow/tensorflow_training_embedding_sparseadam.html
 | 
						|
 | 
						|
.. toctree::
 | 
						|
    :maxdepth: 1
 | 
						|
    :hidden:
 | 
						|
 | 
						|
    Training/TensorFlow/accelerate_tensorflow_training_multi_instance
 | 
						|
    Training/TensorFlow/tensorflow_training_embedding_sparseadam
 | 
						|
 | 
						|
General
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
* `How to choose the number of processes for multi-instance training <Training/General/choose_num_processes_training.html>`_
 | 
						|
 | 
						|
.. toctree::
 | 
						|
    :maxdepth: 1
 | 
						|
    :hidden:
 | 
						|
 | 
						|
    Training/General/choose_num_processes_training
 | 
						|
 | 
						|
 | 
						|
Inference Optimization
 | 
						|
-------------------------
 | 
						|
 | 
						|
PyTorch
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
* `How to accelerate a PyTorch inference pipeline through ONNXRuntime <Inference/PyTorch/accelerate_pytorch_inference_onnx.html>`_
 | 
						|
* `How to accelerate a PyTorch inference pipeline through OpenVINO <Inference/PyTorch/accelerate_pytorch_inference_openvino.html>`_
 | 
						|
* `How to quantize your PyTorch model for inference using Intel Neural Compressor <Inference/PyTorch/quantize_pytorch_inference_inc.html>`_
 | 
						|
* `How to quantize your PyTorch model for inference using OpenVINO Post-training Optimization Tools <Inference/PyTorch/quantize_pytorch_inference_pot.html>`_
 | 
						|
* `How to find accelerated method with minimal latency using InferenceOptimizer <Inference/PyTorch/inference_optimizer_optimize.html>`_
 | 
						|
 | 
						|
.. toctree::
 | 
						|
    :maxdepth: 1
 | 
						|
    :hidden:
 | 
						|
 | 
						|
    Inference/PyTorch/accelerate_pytorch_inference_onnx
 | 
						|
    Inference/PyTorch/accelerate_pytorch_inference_openvino
 | 
						|
    Inference/PyTorch/quantize_pytorch_inference_inc
 | 
						|
    Inference/PyTorch/quantize_pytorch_inference_pot
 | 
						|
    Inference/PyTorch/inference_optimizer_optimize
 | 
						|
 | 
						|
Install
 | 
						|
-------------------------
 | 
						|
* `How to install BigDL-Nano in Google Colab <install_in_colab.html>`_
 | 
						|
* `How to install BigDL-Nano on Windows <windows_guide.html>`_
 | 
						|
 | 
						|
.. toctree::
 | 
						|
    :maxdepth: 1
 | 
						|
    :hidden:
 | 
						|
 | 
						|
    install_in_colab
 | 
						|
    windows_guide |